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Abstract—Visual Question Answering (VQA) is a computer
vision task in which a system produces an accurate answer to
a given image and a question that is relevant to the image.
Medical VQA can be considered as a subfield of general VQA,
which focuses on images and questions in the medical domain.
The VQA model’s most crucial task is to learn the question-
image joint representation to reflect the information related to
the correct answer. Medical VQA remains a difficult task due to
the ineffectiveness of question-image embeddings, despite recent
research on general VQA models finding significant progress. To
address this problem, we propose a new method for training VQA
models that utilizes adversarial learning to improve the question-
image embedding and illustrate how this embedding can be used
as the ideal embedding for answer inference. For adversarial
learning, we use two embedding generators (question–image
embedding and a question-answer embedding generator) and a
discriminator to differentiate the two embeddings. The question-
answer embedding is used as the ideal embedding and the
question-image embedding is improved in reference to that.
The experiment results indicate that pre-training the question-
image embedding generation module using adversarial learning
improves overall performance, implying the effectiveness of the
proposed method.

Keywords—medical visual question answering, adversarial
learning.

I. INTRODUCTION

Interest in automated medical image interpretations is in-
creasing as the field of artificial intelligence advances. As
a result, medical VQA is getting a lot of attention in the
medical community since it has the ability to improve clinical
decision-making and help patients learn more about their
health problems through medical imaging.

The medical VQA system has various advantages for both
medical professionals and patients. These types of systems
can be used to make clinical decisions or even clarify medical

Fig. 1. Examples for situations where the question provides no information
about the object or region that is relevant to the answer. (from pathVQA data
set)

professionals’ decisions. Another issue is that medical special-
ists who can evaluate a medical image and make a diagnosis
are limited and often overworked. As a solution using a
medical VQA system, only the images that are considered
critical can be directed to specialists, thereby saving time for
specialists. And patients with access to medical images can
learn more about their medical issues via the medical VQA
system. And patients can only make an appointment if there
is an issue identified by the VQA system. Furthermore, some
scans provide a vast number of images, but professionals only
look at the ones that are relevant to the patient’s symptoms.
Other generated photos can be evaluated using an automated
medical VQA system in these instances to identify if there is
an anomaly early on.

VQA systems are becoming more accurate and efficient as
deep learning and image processing areas develop. However,
medical VQA systems are not yet reliable enough to use
in actual clinical settings. As previously mentioned, there
are lots of advantages of the medical VQA system that can
have a significant impact on the medical field. Despite the
potential benefits, building a medical VQA system has unique978-1-6654-8786-3/22/$31.00 ©2022 IEEE

20
22

 M
or

at
uw

a 
En

gi
ne

er
in

g 
R

es
ea

rc
h 

C
on

fe
re

nc
e 

(M
ER

C
on

) |
 9

78
-1

-6
65

4-
87

86
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

M
ER

C
on

55
79

9.
20

22
.9

90
61

68

Authorized licensed use limited to: Robert Gordon University. Downloaded on June 14,2025 at 04:32:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Main components of a typical VQA Model. Image and the questions
are the inputs for the two feature extraction components. The question-image
co-relation module generates fused output (vector of size 768 in this scenario)
using the image and question features.

challenges. We try to address some of these issues in this work.
In medical VQA, learning the joint representation of

question-image pairs is one of the most important tasks. Most
existing general VQA models use multi-modal correlation
methods to learn joint representation [1], [2]. But, for a
variety of reasons, general VQA models do not perform well
on medical VQA tasks, hence researchers are attempting to
develop VQA models that are specific to medical VQA. In this
paper, we proposed a new model that uses adversarial learning
methods to learn the question-image joint representation in
addition to the multi-modal correlation methods.

II. RELATED WORK

As the baseline of our experiment, we used the method
proposed in [3] for PathVQA [4] data set. In that method,
the authors followed a model proposed in LXMERT [5]. Text
features are extracted with BERT [6] which uses the splitting
and tokenizing approach in [7]. A Faster-RCNN network pre-
trained on a medical dataset (A dataset that includes images of
blood cells) was used to collect image features. A cross-model
encoder was used to learn the relationship between image
and text embeddings. That encoder contains self-attention
sub-layers, cross-attention sub-layers, and some feed-forward
layers. In our architecture, we used the concept of GAN
(Generative Adversarial Networks) [8] to improve correlation
learning. A GAN consists of two main sub-networks. The
discriminator network and the generator network. The gen-
erator is responsible for generating better data representations
and the discriminator is responsible for discriminating against
data created by the generator. In this conceptual framework,
both the generator and the discriminator improve similarly to
a min-max two-player game. In this study, the authors used
adversarial networks to generate images from random noise
that cannot be distinguished from training example images.

In our proposed method, similar adversarial learning con-
cepts are used to train a question-image embedding generator
that can emulate an ideal embedding that reflects answer
information. Instead of starting from random noise, image
and question features can be used to generate an improved
question-image embedding to infer the answer.

In our literature survey, we reviewed VQA models and train-
ing approaches presented in [9]- [13]. To our best knowledge,

the possibility of using the adversarial network in medical
VQA has not yet been explored in other medical VQA studies.
Most of the VQA models are mainly focusing on multi-modal
correlation methods to capture the answer-related information
in the question-image embedding.

ALMA [14] is a method proposed for visual question
answering with adversarial learning. A pre-trained VGG19
network [15] has been used for image feature extraction and
a Glove [16] for text feature extraction. Also, the ALMA
architecture consists of a Siamese network to learn the cor-
relation between the image and the question. The concept of
GAN is used to improve correlation learning and obtain a
better question-image embedding. The authors have proposed
a framework for integrating adversarial networks into multi-
modal correlation learning and have performed experiments on
three general VQA data sets. The experimental results indicate
improvement, suggesting the effectiveness of adversarial learn-
ing. However, all experiments are done in the general VQA
domain, which has larger data sets compared to medical VQA
data sets. In contrast, our experiments are carried out on the
PathVQA medical data set, which represents a wide range of
medical concepts with a limited number of data examples.

III. PROBLEM DEFINITION

As shown in Fig. 2, the four main components of a basic
VQA model are the image feature extraction module, question
feature extraction module, question-image embedding module,
and answer prediction module. Image input and the question
(text input) are fed into the image feature extraction module
and the question feature extraction module respectively. The
output from each module will then be fed into the question-
image embedding module, and the question-image embedding
module’s embedded output will be used to predict the answer.

As indicated in Fig. 2, the image embedding that is used
to predict the answer is considerably smaller in size than
the original image and question representations. As a result,
the joint embedding of the image and question only carries
a limited amount of data. To correctly predict the answer,
information relevant to the answer should be available in
the question-image embedding. Because of this, the most
challenging and crucial task in VQA is learning the joint
representation of the question-image pair for answer inference.

Usually, general VQA models do not perform well for
medical VQA mainly due to, the size of the medical VQA data
sets is very low compared to general VQA data sets, and the
knowledge base required to answer medical VQA questions
is very diverse, yet only a few examples are available for
particular medical concepts.

Furthermore, most existing methods focus on analyzing the
multi-modal correlation between the question and the image
to infer answer-related information. Multi-modal correlation
methods attempt to focus more on the image regions present
in the question. The majority of the general VQA questions
involve an object or a region in the image. As a result, multi-
modal correlation approaches will capture the answer-related
information for those types of questions effectively.
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However, when the question does not include any informa-
tion about the object or region that is relevant to the answer,
these methods may not be able to capture the information
adequately. This scenario is illustrated by two questions in
Fig. 1. In medical VQA, these types of questions are quite
common. As a result, answer-related information could be
missing from the question-image joint embedding, resulting
in poor medical VQA performance.

In the proposed method, we are focusing on improving
the question image embedding to reflect the answer-related
information. In this approach, we use adversarial methods
to improve question-image joint representation in addition to
multi-modal correlation methods.

IV. METHODOLOGY

Fig. 3. The architecture of the baseline models with image, question, and
cross-modality encoder. Answer prediction module receives the question
image embedding as the input. Question image embedding should contain
the answer-related information to successfully predict the answer.

A VQA training example consists of an image, a question
related to the image, and the answer to the question. The
objective of the VQA system is to predict the answer using
the image and the question. In the process, the VQA system
generates a question-image embedding using the question-
answer pairs. Each question and answer pair relates to a
specific semantic scene of the image. The answer is linked
to that specific semantic scene, and to predict the answer
this specific semantic scene is expected to be included in the
question image joint embedding. As an example, in Fig. 1
the question “What does this appearance imply?” and the
answer “impending perforation” corresponds to the semantic
scene “Impending perforation appearances are present in this
image”. If this semantic scene is encoded into the question-
image embedding answer can be retrieved from it.

In the question and answer pair of the previous example, the
same semantic scene can be found. The question and answer

Fig. 4. In the initial phase VQA model is trained using only the language
features extracted by the concatenated answer and question string. Question
answer embedding generated by the LXMERT is used as the input of the
answer prediction module.

in Fig. 1 create a semantic scene as “This appearance implies
impending perforation”. The intended semantics that needs to
be encoded in the question-image embedding is similar to this
semantic scene in the question-answer pair. That is question-
answer embedding can act as the ideal embedding to infer the
answer. As a result, emulating the question-answer embedding
with the question-image embedding will allow the question-
image embedding to reflect the answer-related information.

To make a question-image embedding similar to a question-
answer embedding, our method uses adversarial learning to
pre-train the question-image embedding generator.

In our method, we are using the Medical VQA model used
in Pathological Visual Question Answering [3] as the baseline.
As shown in Fig. 3 the VQA model we are using consists
of four main components; an image feature encoder for pro-
cessing the image features, a language encoder to process the
question features, a cross-modal encoder for question image
embedding generation, and the answer prediction module to
predict the answer from the predefined answer space. In this
research, our main focus is on improving the question-image
embedding generator. Our proposed training methodology can
be divided into 3 phases.

1) Training the model using question and answer
2) Training the question-image embedding generator using

adversarial learning
3) Use the pre-trained question-image embedding generator

in phase two, in the VQA model and train retraining the
entire model.

And our model consists with following components:
• Question-answer embedding generator - language self

attention layers in the LXMERT [5]
• question-image embedding generator - cross-modal rela-

tionship encoder
• Answer prediction module - a fully connected neural

network

A. Phase 1 - Training question-answer embedding generator

In this phase, we trained the baseline VQA model using
the question-answer pairs. To generate the question-answer
embedding, we used the language self-attention layers in the
LXMERT model as the question-answer embedding gener-
ator. For each question-answer pair, we created the input
by concatenating the answer and question using the [an-
swer] [question] pattern. Let us denote one training example
as E which has a question Eq , an image Ei and an answer
Ea. For inputs Eq and Ea, XEqa

is the output generated
from the question-answer embedding generator. After train-
ing, question-answer embedding XEqa

was able to achieve
a high level of performance since it has the answer-related
information directly encoded. Hence it is possible to use the
question-answer embeddings as the ideal embeddings in phase
2. Results of the model performance when using the question-
answer embedding are shown in table I. After the training
process, the question-answer embedding generator module was
saved as a separate module to be used in the adversarial
learning phase.

Authorized licensed use limited to: Robert Gordon University. Downloaded on June 14,2025 at 04:32:56 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 5. The high-level architecture diagram of the solution is shown here. The blue dotted box contains the components used in phase 2. To generate the
question-answer embedding, the question-answer embedding generator trained in phase 1 is used. The inputs to the discriminator are the question image
embedding and the question-answer embedding. The discriminator attempts to distinguish between two embeddings and feeds the adversarial loss back to the
question image embedding generator. The green dotted box contains the components utilized in phase 3. The answer is predicted using the output from the
improved question image embedding.

TABLE I
ACCURACY OF DIFFERENT TYPES OF OPEN-ENDED QUESTIONS IN PHASE 1

Question
Method types

Yes/No What Where How How much/many Why Overall Accuracy
Baseline model 0.861 0.22 0.73 0.12 0.45 0.50 0.576

Baseline model with question answer embedding 1.00 0.67 0.94 0.34 0.82 0.68 0.838

B. Phase 2 - Adversarial Learning

In this phase, the goal is to train the question-image em-
bedding generator, to provide an output as close as possible
to that of the question-answer embedding generator XEqa

,
for a given image (Ei), question (Eq), and answer (Ea).
Generative adversarial learning [8] is used to train the question
image embedding generator. In this process, we introduced a
neural network to act as the discriminator. For the question-
image embedding generator, we use the LXMERT cross-
modal relationship encoder with an additional neural layer.
As seen in Fig. 5 the discriminator receives inputs from
the trained question-answer embedding generator and the
question image embedding generator. The output from the
trained question-answer embedding generator is considered as
the ground truth. The discriminator tries to classify the two
embeddings. The question-image embedding generator will try
to confuse the discriminator by emulating the question-answer
embedding (the ground truth). In the learning process, both
the discriminator and the question image embedding generator
will be trained. Two embeddings will be mostly similar when
adversarial learning has reached a point of convergence.

Let D(x) denotes the discriminator and G denotes the
question-image embedding generator. For a given embedding
x, D(x) outputs a scalar value indicating the probability of

x being a question-answer embedding (XEqa
). G outputs

question-image embedding (XEqi ) with the inputs Eq and Ei.
Both D and G are trained simultaneously for each E, and
training loss will be calculated separately for G and D as
G loss and D loss.

Binary Cross-Entropy Loss (BCELoss) function is used to
calculate the loss. For a prediction x and target y, BCELoss
can be described as:

BCELoss(x, y) = −(y log(x) + (1− y) log(1− x)) (1)

The goal of the G is to create XEqi
such that D(XEqi

) =
1(D identifies XEqi

as a XEqa
). To achieve this G loss is

calculated as:

G loss = BCELoss(D(XEqi
), 1) (2)

The goal of the D is to identify two embeddings correctly,
such that D(XEqi

) = 0 and D(XEqa
) = 1. Therefore to train

the discriminator D loss is calculated as:

D loss =
1

2
× (BCELoss(D(XEqi), 0)

+BCELoss(D(XEqa
), 1))

(3)
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TABLE II
ACCURACY OF DIFFERENT TYPES OF OPEN ENDED QUESTIONS IN PHASE 3

Question
Method types

Yes/No What Where How How much/many Why Overall Accuracy
Baseline method 0.861 0.22 0.73 0.12 0.45 0.50 0.576

Baseline method with adversarial learning 0.867 0.24 0.75 0.16 0.41 0.68 0.587

C. Phase 3 - Answer prediction with improved embeddings

As the last step, the question image embedding generator
of the original model is replaced with the trained question
image embedding generator and the entire model is trained
including the answer prediction component. The modified
model is shown in Fig. 5 inside the green dotted box. PathVQA
[4] dataset that we used to train the model consists of 4, 092
unique answers. The final output of the model is a vector with
a size of 4, 092, each element indicating the probability of
each answer being the correct answer. The answer with the
highest probability is selected as the prediction of the model.
Since the improved question image embedding generator is
able to generate outputs that contain the answer-related infor-
mation, improved performance is achieved in terms of answer
prediction accuracy. The final results are included in the table
II.

The model is similar to the baseline model but the question
image embedding generator is trained separately using adver-
sarial learning to reflect the answer-related information. Fig. 6
shows how the training loss and validation score change as
the training progresses during phase 3.

Fig. 6. Training loss and validation score during the training of the entire
model in phase 3.

Implementation details In the first phase of the research,
we trained the baseline VQA model using the question-answer
embedding. In training the model we followed the original
configurations used in [3]. We used the original data set split of
the PathVQA which has a ratio of about 3:1:1 among training,
validation, and test set. The batch size was set to 32, the
learning rate was 5e-5 and the Adam [17] optimizer was used.
The model reached its peak level of performance after training
for 20 epochs. The question-answer embedding size was set
at 768 to be consistent with the question image embedding. In
phase 2, we trained the question-image embedding generator
and the discriminator with 5e-5 learning rate, and the Adam
[17] optimizer was used. Learning converges after 30 epochs

and the batch size used is 32. In this phase, we used a fairly
simple discriminator model with five fully connected layers
and leaky RELU as the activation function in hidden layers.
Hence training time for this phase was mostly dependent on
the question-image embedding generator’s complexity. In the
final phase entire model is trained with the improved question-
image embedding generator in phase 2. Same configurations
are used as in phase 3 but trained for 40 epochs.

V. DATA SET

For the model training, we are using the PathVQA data set
[4], which includes microscopic images of body tissues, cells,
other parts, and relevant question-answer pairs. The data set
consists of 4, 998 total images and 32, 799 question-answer
pairs. Questions are divided into eight categories. These cat-
egories are Yes/No, What, Where, How, How much/many,
Why, When and Whose. Both open-ended and closed-ended
questions (yes/no answers) are available in the data set.

We used the accuracy [18] metric to evaluate the model.
Accuracy measures the percentage of predicted answers that
are exactly matching with the ground truth. The data set
contains 4, 092 unique answers. The VQA model predicts
the probability that each answer is the correct answer for the
given question and image pair. The answer with the highest
probability is chosen as the prediction.

Fig. 7. Two examples of answers predicted by the improved model and the
baseline model. The green color represents the correct answers and the red
color represents incorrect answers.

VI. RESULTS

Table II shows the performance comparison between the
baseline model and the improved model with the pre-trained
question-image embedding generator. We only performed the
experiment on PathVQA [4] dataset, but we believe our
method should be able to achieve good results on other popular
medical VQA data sets such as VQA-Med [19], VQA-Rad
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[20], and SLAKE [21]. In the adversarial learning phase, it was
difficult to get the losses of two competing models (question-
image embedding generator and the discriminator) to a point
of convergence. We experimented with different configurations
several times to reduce the convergence issue and achieve these
results. We can observe overall performance improvement
for almost all question types of questions. There is accuracy
deterioration for the “How much/many” type of questions. But
only 0.4% of questions are included in this category and a
few wrong predictions can impact the accuracy results. For all
other question types, accuracy improvements can be observed.
Fig. 7 shows two examples where the improved model was
able to produce correct answers that were previously predicted
incorrectly by the baseline model. These findings suggest that
it is effective to use the proposed adversarial pre-training
method to improve the question-image embedding generations
and improve the final performance of the model. However,
there is still a significant difference between the performance
obtained using question-answer embedding (Table I) and the
improved question-image embedding (Table II). This indicates
that even with the improved question-image embedding, the
answer-related information was not fully captured. We believe
that further improvements to the adversarial learning phase of
our proposed method could improve performance even more.

VII. CONCLUSION

In this paper, we discussed the challenges of creating the
Medical VQA model compared to the general VQA model
and identified the ineffectiveness of the question-image joint
representation to reflect the answer-related information as a
limiting factor in improving the performance of medical VQA
models. As a solution, we suggest an adversarial learning
approach to train question-image embedding generators. We
present the experiment results and implementation details of
our proposed method. The results of phase 1 (table I) indicate
that question-answer embeddings are effective to refer to as the
ideal embeddings when training the question image embedding
generator. And the final results of phase 3 (table II) show
performance improvement over the baseline results. More ex-
periments can be conducted to explore the possibility of using
the proposed pre-train approach to improve the performance
of other VQA models, including general VQA.
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