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Abstract—Given the rapid increase of respiratory illnesses in
recent times, the demand for medical report writing for chest X-
Rays (CXR) has significantly increased. In practice, a specialized
medical expert has to go through an X-Ray image to compile the
accompanying report, which is tedious, not scalable, and poten-
tially prone to human error. Therefore, automatic medical report
generation (AMRG) solutions for CXR as a diagnostic assistance
tool could play an important role in lowering the burden on
radiologists, making them more productive. However, current
AMRG solutions are still lagging far behind the performance
of human experts due to the reasons such as the inability to
extract the most relevant features to be used for the compilation
of the report. We address this by proposing MERGIS: MEdical
Report Generation using the Image Segmentation approach.
MERGIS is a modern transformer-based encoder-decoder model
that leverages image segmentation to improve the accuracy
of automatic report generation. In this approach, the CXR
images are segmented before feeding into the model, enabling the
encoder to extract relevant visual features of the medical image
resulting in more accurate radiography reports. The proposed
model outperforms the current state-of-the-art model for report
generation on the MIMIC-CXR dataset with performance scores:
BLUE-1 = 0.296, METEOR = 0.128, ROUGE L = 0.335, and
CIDEr = 1.150.

Keywords—medical report generation, Chest X-Ray, trans-
former, image segmentation, self-attention

I. INTRODUCTION

Medical imaging plays an important role in medical diag-
nosis, providing insights to the state of organs and tissue in a
non-invasive manner. Radiologists analyze radiographs such as
X-Ray images to produce detailed reports to accompany the
images so that other specialists can extract the information
more effectively. The requirement for generating reports of
chest X-Rays (CXR) has increased given the recent outbreak

of COVID-19. However, writing an accurate report is time-
consuming and results in increasing the waiting time of
patients, invoking dissatisfaction, and inconvenience [1]. Thus,
machine learning-based automation could be used to make
the medical report generation workflow much more efficient.
However, it is challenging given the following requirements:

(i) Generated reports should include coherent content with
accurate medical terminology of the findings.

(ii) Medical reports should contain relevant and precise
information about the diagnosis to get insights into a
patient’s condition.

This research intends to increase the efficiency of CXR
report creation by providing an accurate report for radiologists
to use as a reference. Medical report generation is an exciting
area of research with the advancement of robust deep-learning
techniques for image analysis and text generation. Usually, a
formal medical report consists of impressions and findings.
These two sections are concatenated to create a detailed report
which will be used as the input for the proposed model.
The generated reports need standard medical terms describing
any anomaly since these CXR reports are observed by other
specialists in the medical diagnosis process. In addition, gener-
ating a more accurate, informative, and coherent report without
clinician intervention is challenging. Yet a robust deep learning
model can address it by generating an accurate medical report
with medical terminologies.

This study proposes a transformer-based encoder-decoder
architecture to generate medical reports. The encoder consists
of a Convolutional Neural Network (CNN) as the backbone to
extract the visual features of the CXR image. The decoder is
similar to the original transformer used in Natural Language
Processing [2], which uses a multi-head attention mechanism.
The words are embedded using Byte-Pair Encoding (BPE),

979-8-3503-4737-1/23/$31.00 ©2023 IEEE
90

20
23

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 A

dv
an

ce
d 

R
es

ea
rc

h 
in

 C
om

pu
tin

g 
(I

C
A

R
C

) |
 9

79
-8

-3
50

3-
47

37
-1

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

R
C

57
65

1.
20

23
.1

01
45

69
9

Authorized licensed use limited to: Robert Gordon University. Downloaded on June 13,2025 at 16:43:39 UTC from IEEE Xplore.  Restrictions apply. 



which is a popular subword-based tokenization algorithm used
by state-of-the-art NLP models [3]. Although similar state-
of-the-art models output better results, most of them fail to
optimize the visual feature extraction head, which helps to
invoke better linguistic expressions in generated reports.

Subsequently, in this paper, we strive to leverage the
transformer-based encoder-decoder model by experimenting
with different CNN architectures as the backbone of the
encoder. Additionally, we use segmented medical images to
train the final model to take maximum advantage of the
self-attention mechanism, which is the core concept behind
transformers. The high-level architecture of the entire process
can be observed in Fig. 1. Several experiments were carried
out to select and validate the proposed approach.

First, we used a DenseNet-121 as the encoder backbone
for feature extraction of the base model. The base model
has given better results compared to the scores of recent
transformer-based deep learning models. However, a compara-
tive analysis of different CNN models should be performed to
improve feature extraction further. The model recorded even
better results with ResNet101, which was the most efficient
CNN obtained as the encoder backbone from the comparative
analysis. Ultimately, segmented images were used to amplify
the model’s ability to focus on the lung area. The result of
this model surpasses all other approaches in image feature
extraction and overall text generation. The novel contributions
of this paper are as follows:

1) Phase I: Analysis of the effect of different CNN ar-
chitectures for visual feature extraction to improve the
performance of medical image report generation, hence
improving the quality of reports generated.

2) Phase II: Introducing image segmentation and mor-
phological post-processing as precursors to the report
generation workflow resulting in an increase in accuracy.

Fig. 1: Proposed baseline model with data pre-processing

The paper is structured as follows. Section II depicts the
work related to transformer-based medical image models. A
comprehensive description of the proposed model is presented
in Section III. The experimental result analysis with the state-
of-the-art methods is bestowed in Section IV.

II. BACKGROUND

The first self-attention-based transformer architecture was
introduced by Vaswani et al. [2]. They proposed a scaled

dot-product attention mechanism and a multi-head attention
mechanism that can run several attention layers in parallel.
This method was a solution for the vanishing gradient issue
of recurrent neural networks (RNNs). With the attention mech-
anism, transformers can learn contextual relations between
words. Therefore, it can provide more accurate predictions.

Among several studies on medical image report generation,
Jing et al. [4] have utilized a hierarchical LSTM decoder to
generate medical reports. Their multi-task learning with a co-
attention mechanism got 0.517, 0.386, 0.306, and 0.247 scores
for BLEU-1, BLEU-2, BLEU-3, and BLEU-4, respectively,
for the IU X-Ray dataset. They have made a tag prediction
for the input image, and each tag is represented using a word-
embedding vector, which acts as a semantic feature for the
respective image. A CNN has been used as the visual feature
extractor, and both the visual features and semantic features
fed into the co-attention mechanism for further capturing of
features. In [5], Li et al. have presented a different approach
based on extracted disease graph. The encoder module has
been used to transform visual features into a structured abnor-
mality graph. After that, the retrieve module is used to load the
text template, which matches the abnormalities, and another
module called Paraphrase has used to re-write the generated
report according to the specific case. Using this model, they
achieved a BLEU-1 score of 0.482 from the IU X-Ray dataset.

In another study, Wijerathna et al. [6] have used the
LXMERT (Learning Cross-Modality Encoder Representations
from Transformers) model, which is mainly designed for
question-answering tasks using images. The authors have
modified the LXMERT model and used it for medical report
generation. They have used the ChexNet model as the primary
feature extraction model and integrated a memory into the
decoder. With these improvements, they have achieved a
BLEU-1 score of 0.498 by using the IU X-Ray dataset. A
similar study has been done by Amjoud et al. [1], using a
transformer-based approach. The model consists of a feature
extractor, a separate encoder, and a decoder. DenseNet-121
is used to extract features, and it is trained on the ImageNet
database using an Nvidia T4 GPU. The model achieved 0.479,
0.205, and 0.380 scores for BLEU-1, METEOR, and ROUGE
metrics, respectively.

Chen et al. have followed a similar approach for radiology
report generation [7], with three major components similar
to the previously mentioned study. They have changed the
feature extractor to a ResNet and integrated a memory module
into the decoder. The purpose of the extra memory module
is to improve the original layer normalization with MCLN
(Memory-driven Conditional Layer Normalization) for each
decoding layer. They achieved a BLEU-1 score of about
0.353 using the MIMIC-CXR dataset [8], which they used for
training and evaluation. They evaluated the model using the
IU X-RAY dataset and recorded a score of 0.470 for BLEU-1.

“RATCHET” is another study that followed a similar ap-
proach to the medical image report generation using transform-
ers [3]. In this model, the encoder has been replaced with the
pre-trained DenseNet-121, and it works as the primary image
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feature extractor. The decoder architecture of the transformer
remains the same as the base model.

Although several studies have addressed medical image
report generation, most have not focused much on improving
visual feature extraction. Therefore, in this study, we apply
image segmentation to improve the feature extraction process
and use a transformer-based model to generate radiology
reports. Furthermore, several studies have used different CNN
architectures to classify CXR images [9]. In our study, we
also perform a comparative study to identify the most suitable
CNN model for visual feature extraction as the backbone of
the encoder.

III. METHODOLOGY

A. Datasets

We used the MIMIC Chest X-ray (MIMIC-CXR) Database
v2.0.0 [8], a large publicly available dataset of chest radio-
graphs as the main dataset. It contains 377,110 CXR images
from 227,827 imaging studies, where each study has frontal
and/ or lateral views. This multi-class dataset has 14 derived
labels. The original dataset contains rich DICOM (.dcm)
images of high-resolution with free-text radiology reports.
The uncompressed size of this dataset is approximately 4.6
TB, which is much larger than other publicly available CXR
datasets. Since we use a transformer-based approach for med-
ical report generation, a larger dataset similar to MIMIC-CXR
tends to give better results.

In this study, we used the MIMIC-CXR-JPG dataset, which
contains CXR images in JPG format with structured labels
derived from free-text radiology reports due to computational
resource constraints. The corresponding CXR report states the
observations such as “Heart size is likely normal. Lungs are
clear taking into account low lung volumes.“ and impressions
such as “Mild volume overload in the background of low
lung volumes.”. They have converted the DICOM images
in the original dataset to a compressed JPG format using a
lossy compression algorithm. The corresponding JPG dataset
is approximately 557.6 GB in size, which is significantly lower
than the original dataset. We split the dataset into a ratio of
80:10:10 for training, testing, and validation, with 194639,
24344, and 24342 images, respectively.

Moreover, we used two CXR datasets, namely Montgomery
County (MC) [10] and Shenzhen Hospital (SH) [11], to train
the segmentation model. The MC dataset includes manually
segmented lung masks containing 138 posterior-anterior x-
rays. The left and right binary lung masks are available
separately on different directories and must be combined when
training the model. The SH dataset contains 662 frontal chest
X-rays, of which 326 are normal cases, and 336 are cases
with manifestations of Tuberculosis, including pediatric X-
rays. The combined dataset was split into a ratio of 80:10:10
to obtain the train, test, and validation datasets.

B. Process View

The transformer-based proposed model with image segmen-
tation is shown in Fig. 2. Initially, the CXR image is segmented

and saved it locally. We have segmented the images from the
model trained using MC and SH datasets. Then the segmented
images were passed into the feature extraction module.

The result of the feature extraction head is passed as the
Key(K) and the Query(Q) inputs to the second multi-head
attention (MHA) layer of the decoder. The Value(V) input of
the second MHA layer comes from the first masked multi-
head attention (M-MHA) layer, and it contains the embedding
information of vocabulary we created using the medical re-
ports. Then the attention matrix is calculated by matching the
Q and the K against each other and expedited using a scaled
dot product and a softmax operation. softmax(QKT ) results
in a probability matrix which will be further multiplied by V
as shown in (1) to obtain the localized values that the model
should focus on. Here, Q : Query, and K : Key are the
same matrices from the output of the feature extraction layer.
The value V is the matrix of word tokens with positional
embedding, and dk is the dimension of the key matrix.The
decoder uses these values to generate the next predicted token.

Fig. 2: Proposed model with CXR image segmentation

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

C. Transformer-based encoder-decoder

We used DenseNet-121 model as the primary feature ex-
tractor of the baseline model, as inspired by the results of
RATCHET [3]. It is a densely connected convolutional neural
network, including multiple average pooling layers and a
fully connected layer. The model is trained using the Adam
optimizer with a learning rate of 1× 10−5 and a batch size of
32 for 10 iterations. Initially, the medical images are resized
to 224 x 224, and applied data augmentation techniques such
as include random flipping, random brightness, saturation, and
contrast shifting. Next, the images were turned into grayscale,
and the overall process is shown in Fig. 1. Visual feature
extraction is the primarily focused module of the proposed
system, as it significantly impacts the model performance by
identifying the abnormalities and defects in CXR images.
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Word embedding is also an important part of report gener-
ation, and the model needs to possess syntactic and semantic
knowledge of the language to generate an accurate report of
the medical image. Moreover, medical terminology strongly
influences the tokenization process and subsequently leads
to a better learning curve of the model. We have used the
Byte Pair Encoding (BPE) tokenizer, which is provided by
the Huggingface library. The BPE breaks the word into one
or more sub-words. The primary idea of these tokenizers is
that more frequent words should be given unique IDs, and
infrequent words should break into more sub-words while
preserving the meaning.

A vocabulary of 20000 words is generated using the BPE
tokenizer and the medical reports in the MIMIC-CXR dataset.
We only took the words that occurred more than two times
to create the vocabulary. In addition, the medical reports
are created using the combination of both the Findings and
Impression sections of the original report to obtain a detailed
report. The Findings section contains the observations of
the radiologist about the medical image, and the Impres-
sions section includes a summary of the findings, symptoms,
and clinical history. Some words are randomly changed to
< mask > tokens to make the process more robust.

After the positional embedding of the medical reports, we
used M-MHA to understand the meaning of each word in the
medical report using the self-attention mechanism. We have
used eight multi-head attention modules to understand each
word’s context in the medical report. The maximum length of
the generated sequence is set to 128 tokens considering the
longest radiology report found in the MIMIC-CXR dataset.
Moreover, an iterative process generates each token after the
initial < start > token and concatenates with the previously
generated sequence, which will be used as the input to generate
the next token. Subsequently, the process terminates when it
predicts the < end > token or exceeds the maximum limit.

D. Comparative analysis of CNN models

The baseline model we proposed in phase I uses a
DenseNet-121, as inspired by the model presented in
RATCHET [3]. Moreover, motivated by the existing compara-
tive studies on identifying the best performing CNN models in
CXR classification [12], we experimented with several CNN
models, namely DenseNet, ResNet, MobileNet, Inception, and
Xception, to select the best performing CNN model to be
used as the backbone of the encoder in this study. In order to
assess the performance of each CNN model, we used random
pathological classes and evaluated the performance of each
model to move forward based on the results stated in TABLE
I.

E. Medical image segmentation using U-Net

During phase II, the medical images are segmented to
enhance the process of extracting image features from CXR
images. Inspired by [13], an efficient U-Net architecture is
used to conduct segmentation on CXR images. Both the
images and masks from the combined dataset of SH dataset

and MC dataset were resized to 224 x 224 and normalized
to a range within [0,1]. Data augmentation steps were also
performed to reduce the class imbalance. The Adam optimizer
with a learning rate of 1×10−5.The model was trained for 20
epochs along with a batch size of 5. Since the attention-based
mechanism amplifies necessary details to focus more on the
essential aspects of data, a segmented image would give even
more promising results when combined with attention. The U-
Net architecture comprises a convolution neural network for
both downsampling and upsampling, whose training strategy
relies on the strong use of data augmentation to improve
the efficiency of available annotated samples. The segmented
images were fed into the encoder of the model, which contains
a ResNet101 as the encoder backbone since we obtained the
best results from it using the comparative analysis.

The lung segmentation masks were dilated to load lung
boundary information within the training set, and the images
were resized to 512x512 pixels. Then, the entire MIMIC-CXR
dataset is segmented using the trained U-Net model and saved
with the exact folder structure as the original dataset. The
images were resized to 512x512 pixels and saved in a reduced
resolution locally. The segmented MIMIC-CXR images have
shown better performance compared to the base model. The
image segmentation module that extracts the lung area is used
to comply with the computational resource constraints and less
mobility due to the large size of the MIMIC-CXR dataset. This
approach reduced the size of the dataset, making it easier to
train the model in multiple instances.

IV. RESULTS AND DISCUSSION

Most of the state-of-the-art transformer-based encoder-
decoder models primarily focused on improving the atten-
tion mechanism of the transformer decoder [6] [7]. All of
those mechanisms prioritize the learning focus of the overall
transformer-based model. Thus, many models do not give
much attention to improving the encoder for better visual
feature extraction. A systematic evaluation of different CNN
models for visual feature extraction and usage of image
segmentation on attention-based transformer models is much
needed to get the maximum out of the encoder.

Initially, we implemented a transformer-based encoder-
decoder model with a DenseNet-121 [3] for feature extraction.
In phase I, a comparative analysis was done using different
CNN models to find the best suitable feature extractor. The
results are mentioned only for selected classes due to the
database bias, which is a potential limitation of the study and
can be minimized with proper data augmentation, although it
is a tedious task.

To assess the performance, we have performed direct multi-
label classification for the 14 classes available in the CheXpert,
a large chest radiograph dataset with uncertainty labels [6].
The accuracy of a test yields its ability to differentiate a
diseased person and a healthy person correctly. Similarly,
the sensitivity of a test can identify a diseased individual
correctly, while the specificity of a test can correctly classify
an individual as ’healthy’. These values are more important
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TABLE I: Evaluation Results of MIMIC-CXR Image Classification for Selected Classes. (Pn: Pneumonia, LL: Lung Lesion,
PO: Pleural Other, At: Atelectasis)

CNN Architecture Accuracy(%) Sensitivity(%) Specificity(%)
Pn LL PO At Pn LL PO At Pn LL PO At

ResNet101 63.5 75.6 68.7 78.4 66.0 62.4 61.7 62.1 62.4 78.8 69.9 86.0
DenseNet-121 62.3 69.0 63.8 76.9 75.0 75.7 59.5 60.9 58.1 67.4 64.6 84.3

Xception 60.3 71.0 54.5 74.3 68.4 76.7 73.9 63.2 57.7 69.6 51.0 79.5
InceptionV3 59.9 71.4 60.1 74.8 71.6 70.4 66.9 61.9 56.0 71.7 58.9 80.8

MobileNetV2 60.7 61.2 40.8 70.3 48.2 83.0 78.2 68.5 64.8 55.8 34.1 71.1

(a) (b) (c) (d)

Fig. 3: ROC curves of ResNet101, DenseNet-121, Xception, InceptionV3, and MobileNetV2 related to pathological classes
Pneumonia, Lung Lesion, Pleural Other, Atelectasis

in clinical settings for screening tests and the final confirma-
tion of disease. Considering the results shown in TABLE I,
sensitivities of most of the pathological classes are higher for
MobileNet. Thus, it is more suitable for screening purposes.
Testing positive from MobileNet will help the person to
identify the diseases beforehand to take necessary premedi-
cations. In contrast, the specificities of LL, PO, and At are
highest for ResNet, implying that it is a better model for
the final confirmation of the disease for those classes since
testing positive will guarantee that the patient is diseased.
Additionally, observing the results of TABLE I, accuracies of
all pathological classes among the selected CNN architectures
are highest for ResNet. This ensures that it is better for both
screening and the final confirmation of disease. Considering all
the results, ResNet is more powerful compared to other CNNs,
since it yields better results for both accuracy and specificity.

Furthermore, we have included the receiver operating char-
acteristic (ROC) curves for selected classes that have compar-
atively large amounts of studies to evaluate the performance
of CNNs to some extent. The ROC curves with the area
under the curve (AUC) values are shown in Fig. 3. It can
be observed that ResNet101 has shown comparatively better
results among the considered CNN models for most of the
cases. We have selected four pathological classes, namely
Pneumonia, Lung Lesion, Pleural Other, and Atelectasis, to
visualize the results, considering the higher number of image
availability, that result in smooth ROC curves. Generally,
classes with imbalanced datasets show less performance, and
the model tends to provide ROC curves with discrete behavior.

When the ROC curves for a model are more toward the main
diagonal, the false positive rate is larger and the true positive
rate is smaller, making the respective test less accurate. In
Fig. 3, DenseNet, Xception, and Inception models are on par

with each other and produced averagely better results for most
of the pathological classes. On the other hand, MobileNet
shows a comparatively low AUC score for each of the classes,
and ROC curves related to MobileNet are more toward the
main diagonal as shown in Fig. 3(a) and Fig. 3(c), making
MobileNet the least accurate model from the selected models.

In comparison, DenseNet-121 performs better than Mo-
bileNet in all the classes and has better AUC scores as
portrayed in Fig. 3(a), Fig. 3(b), and Fig. 3(d). Thus, it is
evident that our baseline model, which uses a DenseNet-121
as the primary feature extractor, performs better than most of
the state-of-the-art models. Generally, the test tends to be more
accurate when the ROC curve is closer to the upper left corner.
Singularly, ResNet101 performs better than all the selected
CNN models, and it occupies the best ROC curves since most
of those curves tend to deviate more toward the upper left
corner, resulting in higher AUC scores. Thus, considering the
results in TABLE I and ROC Curves in Fig. 3, a CNN encoder
with ResNet101 is used as the primary feature extractor since
ResNet101 performed finer in many cases.

The overall accuracy of using ResNet101 backbone as the
visual feature extractor is stated in TABLE II. The NLG
metrics include BLEU-1 (B-1), METEOR (MET.), ROUGE
L (R L), and best language quality performance is highlighted
in bold. MERGIS contains the results obtained using the
segmented images, and we selected the encoder with the
Resnet101 backbone as the most performing model using the
comparative analysis.

Finally, we used the segmented images of MIMIC-CXR
images as the input and evaluated the baseline model using the
ResNet101 encoder backbone as the primary feature extractor
(ResNet101 + Segmentation). The baseline model with a
DenseNet-121 feature extractor and transformer decoder seems
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TABLE II: NLP Evaluation on MIMIC-CXR Report
Generation.

Model NLP Metrics
B-1 MET. R L CIDEr

TieNet [14] 0.190 0.069 0.200 0.411
RATCHET [3] 0.232 0.101 0.240 0.493
LXMERT as Caption Decoder [6] 0.165 - - -
Our Experiments
Baseline (DenseNet-121) 0.224 0.108 0.233 0.648
ResNet + without Segmentation 0.251 0.113 0.265 0.767
MERGIS (ResNet + Segmentation) 0.296 0.128 0.335 1.150

to have a better performance than the TieNet [14], which
is a CNN-RNN-based model that uses ResNet for feature
extraction. Thus, we can observe that Transformer based
models outperform RNN-based models. The results of TieNet
were obtained from [3] since they have reimplemented the
TieNet model and evaluated using the MIMIC-CXR dataset.

The RATCHET model [3], which is a CNN-RNN-based
medical transformer that uses a DenseNet-121 as the fea-
ture extractor, outperformed both our baseline model with
DenseNet-121 and TieNet. Additionally, LXMERT, as caption
decoder [6], has used ChexNet as the feature extractor. It
is similar to DenseNet-121 since both have 121 layers and
perform slightly lower than TieNet. In contrast, our model,
which only uses ResNet101 as the encoder backbone, per-
formed better than RATCHET on all the BLUE-1, METEOR,
ROUGE L, and CIDEr scores. Further, studies have shown
that ResNet101 provides better accuracy in general CXR
classification [12]. Importantly, the proposed MERGIS model
that uses segmented images outperformed all the other models
by a significant margin. This clearly shows that enhancing
the encoder, which is responsible for visual feature extraction,
can significantly influence the overall performance of the
transformer-based deep learning models.

V. CONCLUSION

We proposed MERGIS model, which is a transformer-
based approach for medical report generation improved with
image segmentation as an input preprocessing step. The overall
research consists of two main phases. In the first phase, a
comparative study between different CNNs, namely DenseNet,
ResNet, MobileNet, Inception, and Xception, was used as
the encoder backbone to extract the visual features. Since
ResNet101 outperformed all other CNNs in comparative anal-
ysis, we used ResNet as the encoder model for the second
phase. The second phase uses a transformer-based model with
CXR images segmented using a modified U-Net architecture.
Given the visual features, the transformer decoder generates
the medical report. To improve the feature extraction and
reduce the attention to unnecessary data on CXR images,
we segmented the MIMIC-CXR images, which significantly
improved the accuracy of the model. We have shown that
the proposed MERGIS model yields better scores for BLUE,
METEOR, ROUGE, and CIDEr metrics compared to the
existing state-of-the-art transformer-based models on MIMIC-
CXR dataset and proves the fact that image segmentation can

significantly enhance the performance of transformer-based
models.
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