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Date of birth
December 6th, 1984

citizen of
Sri Lanka

accepted on the recommendation of

Prof. Dr. Richard Hahnloser (ETH Zürich), examiner
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Abstract

Electron microscopy (EM) enables a detailed view of neuroanatomical structures in the
brain at nanometer resolution. Information uncovered by EM has been instrumental in
providing valuable insights of neuroanatomy and its relationship to higher level functions
such as learning and memory. Petabytes of EM image data have been acquired at
research facilities around the world for neuroscience research. These datasets are being
analyzed mainly to investigate neuronal connectivity patterns at circuit level and to
observe changes in neuronal structures such as synapses, as part of biological hypothesis
testing. Since manual annotation of these images by humans is an inefficient and tedious
task, automatic and semiautomatic image analysis methods are being developed to make
this workflow more efficient.

The first part of this dissertation provides methods for EM image analysis that can
be applied at two different stages of a typical EM image processing workflow. Chapter 2
presents a method for indirect automatic estimation of section thickness in serial section
EM (ssEM) using image statistics alone. This method can be applied before annotation
of images as a post-acquisition step to have a better estimate of the image volume at
the level of individual sections. Accurate quantification of section thickness is useful
since the thickness of sections can deviate from the expected thickness as a result of
imperfections in the cutting process. The method proposed allows more accurate 3D
representations of structures obtained by ssEM and provides more accurate volumetric
statistics. As part of this work, we have also produced the first publicly available dataset
for validating section thickness methods by directly measuring section thickness using
atomic force microscopy.

Chapter 3 describes a method to automatically segment neuron slices in individual
(2D) EM sections. This method focuses on lowering topological errors that take place in
automatic segmentation methods. Such errors are typically caused by low signal-to-noise
ratio in the input images. Main topological segmentation errors are either merge errors
where two adjoining neuron slices in the data are given the same label or split errors
where one neuron slice is segmented as two different neuron slices. The proposed method
lowers such errors by enforcing topological constraints for the segmentation task, which
is formulated as an integer linear program. All constraints used are local constraints
that give rise to global behaviors - for instance, enforcing loop closure for neuron mem-
branes in the segmentation output. Such constraints along with an objective function
incorporating prior probabilities of segmentation labels result in lower topological errors
as shown in the results.

An image-driven analysis of neuroanatomical structure in the zebra finch brain is
presented in part 2 of this dissertation. Male juvenile zebra finches are known to learn
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a stereotyped song from a tutor bird. Chapter 5 presents an investigation of changes
in the number of multisynaptic boutons (MSB) in brain area HVC of juvenile birds as
a result of tutor exposure. Results obtained show that although there is a slight trend
towards a transient increase of the number of MSBs (per cubic micrometer) just after
tutoring started, this interference is not statistically significant. As a secondary obser-
vation, it was seen that MSBs which have symmetric synapses significantly outnumber
MSBs having asymmetric synapses in all of the volumes analysed, irrespective of the
experimental conditions.

The need for automatic and semi-automatic methods for image analysis is on the rise
with the increase of images acquired for research. In general, the accuracy of automated
methods that are used for EM image analysis still have a plenty of room for improvement.
Methods provided in this dissertation have contributed towards improving both post-
acquisition image processing and automated segmentation, both of which are important
stages of the EM image analysis workflow in neuroscience.



Sommario

La microscopia elettronica (EM, dall'inglese electron microscopy) consente una visione
dettagliata delle strutture neuroanatomiche presenti nel cervello, con risoluzione nano-
metrica. Si tratta di una tecnica che ha avuto un ruolo fondamentale nel fornire infor-
mazioni preziose sulla neuroanatomia e sulla sua relazione con funzioni ad alto livello
come l'apprendimento e la memoria. Presso le strutture di ricerca in tutto il mondo, sono
stati acquisiti petabyte di dati estrapolati da immagini di microscopia elettronica per
effettuare ricerche nel settore delle neuroscienze. Nel quadro della verifica dell'ipotesi bi-
ologica, questi dati sono esaminati principalmente per studiare i pattern di connettività
neuronale a livello di circuito e per eseguire un'analisi quantitativa delle variazioni in
strutture neuronali come le sinapsi. In considerazione del fatto che l'annotazione man-
uale eseguita da esperti umani è un'attività inefficiente e tediosa, sono in via di sviluppo
metodi automatici e semiautomatici di analisi delle immagini per rendere più efficiente
questo processo.

La prima parte di questa tesi fornisce metodi di analisi delle immagini di EM che
possono essere applicati a due fasi differenti del tradizionale flusso di lavoro. Nel capitolo
2 viene presentato un metodo per la stima automatica indiretta dell'anisotropia, insieme
al piano di imaging e allo spessore delle sezioni nella EM con sezione seriale (ssEM).
Tale metodo può essere applicato prima dell'annotazione delle immagini; si tratta di
una fase post-acquisizione che consente di ottenere una stima più precisa del volume
delle immagini a livello di ciascuna sezione, ed è utile in quanto lo spessore delle sezioni
può essere differente rispetto allo spessore previsto a causa di imperfezioni nel processo
di taglio. Il metodo proposto consente di avere a disposizione rappresentazioni 3D più
accurate delle strutture ottenute tramite la ssEM e stime più precise dei volumi. Come
parte di questo lavoro, abbiamo prodotto il primo set di dati accessibile al pubblico dei
metodi di validazione dello spessore della sezione, misurando direttamente lo spessore
della sezione tramite la microscopia a forza atomica.

Il capitolo 3 descrive un metodo per segmentare automaticamente le sezionidi neuroni
nelle singole (2D) sezioni della EM. Questo metodo ha come obiettivo la riduzione degli
errori topologici che si verificano nelle procedure di segmentazione automatica, causati
generalmente da un rapporto segnale-rumore (SNR, dall'inglese Signal-to-noise ratio)
basso nelle immagini di input. I principali errori topologici di segmentazione possono
essere errori di unione, nel caso in cui sia assegnata la stessa etichetta a due sezioni di
neuroni adiacenti nei dati, o errori di separazione, nel caso in cui una sezione di neurone
sia segmentata in due diverse sezioni di neurone. Il metodo proposto consente di ridurre
tali errori applicando dei vincoli topologici all'attività di segmentazione, che è formulata
come un programma lineare intero. Tutti i vincoli utilizzati sono vincoli locali che danno
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origine a comportamenti globali portando, ad esempio, a una chiusura dell'anello (loop
closure) per le membrane dei neuroni che circondano le sezioni di neuroni nell'output di
segmentazione.

Nella seconda parte di questa tesi, viene presentata un'analisi basata sulle immagini
relativa alle variazioni nella struttura neuroanatomica del diamante mandarino. È noto
che i diamanti mandarini giovani di sesso maschile apprendono un canto stereotipato da
un uccello maschio tutore, che in un ambiente naturale è il loro padre. Nel capitolo 5
viene presentato uno studio delle variazioni nel numero di bottoni multisinaptici (MSB,
dall'inglese multisynaptic boutons) in un'area del cervello detta HVC (usata come nome
proprio). I risultati ottenuti mostrano che, nonostante ci sia una leggera tendenza a
un aumento transitorio del numero di MSB (per micrometro cubo) subito dopo l'inizio
della fase di tutoring, tale aumento non è significativo. Come osservazione secondaria,
si è notato che i MSB che presentano sinapsi asimmetriche sono estremamente più nu-
merosi dei MSB con sinapsi simmetriche in tutti i volumi esaminati, a prescindere dalle
condizioni sperimentali.

L'esigenza di introdurre nuovi metodi automatici e semiautomatici per l'analisi delle
immagini è sempre più forte, a causa dell'aumento delle immagini acquisite a scopo di
ricerca. In generale, ci sono ancora molti margini di miglioramento per quanto con-
cerne la precisione dei metodi automatici utilizzati per l'analisi delle immagini di EM.
I metodi proposti in questa tesi hanno contribuito a un miglioramento dell'elaborazione
delle immagini post-acquisizione, cos come della segmentazione automatica: entrambe
rappresentano fasi importanti del flusso di lavoro dell'analisi delle immagini di EM nel
settore delle neuroscienze.



Acknowledgement

The work presented in this dissertation was funded by National Competence Center
for Biomedical Imaging (NCCBI), Switzerland and European Research Council (ERC).
Apart from the funding agencies, I was supported by several important people to carry
out my doctoral studies. Hopefully I won’t forget anyone in the following acknowledge-
ment. I would like to start with my two supervisors, Dr. Matthew Cook and Prof.
Richard Hahnloser who provided me with the invaluable opportunity to carry out my
doctoral studies under their supervision at the Institute of Neuroinformatics (INI), Uni-
versity of Zurich and ETH Zurich. I was not only challenged at the right points of time
with the right questions, but also was given the freedom to learn and define the scope
of my scientific interests along with important advice, guidance and resources.

Apart from my doctoral advisors, Prof. Kevan Martin and Prof. Rodney Douglas have
provided me with constructive feedback and thought-provoking questions regarding my
work nearly every time I have presented during periodic institute meetings.

I had the pleasure of working with my colleagues Julien Martel and Jan Funke,
from whom I have learned a lot about computer vision, connectomics and machine
learning. Both of them and Jakob Buhmann have been consistently encouraging and
supportive with valuable ideas and constructive feedback. In addition to them, I have
had many insightful discussions with Stephan Gerhardt, Julia Buhmann, Renate Krause,
Nils Eckstein and Vanessa Leite especially on connectomics. Ziqiang Huang, Thomas
Templier and Rita Bopp provided me with microscopy images and thin tissue sections,
and generously participated in discussions about neuroimaging which helped me in my
method development work as well as image acquisition. Furthermore, I have learned
a lot about electron microscopy from Falk Lucas and John Anderson. Jozef Adamcik
from D-HEST, ETH Zurich, carried out Atomic force microscopy imaging used in this
dissertation.

Fabian Tschopp from INI, William Grisaitis from Turaga lab and Srini Turaga himself
helped me with setting up an efficient CNN on GPUs for neuron membrane classification.

Towards the end of my dissertation, I had the opportunity to work with Leila Elab-
bady and her supervisor Sharon Gobes from Wellesley College, Massachusetts, who
helped shape the analysis carried out in Chapter 5. Leila shared the workload with me
as well. Also thanks to Gregor Schuhknecht for insightful discussions on inhibitory and
excitatory neurons.

I would like to thank Kathrin, Dave, Simone and Maik of INI for their friendly and
extremely efficient support in all administrative matters during my stay at the institute.
Thanks to them, I never had an administrative problem. Even if I did, they probably
would have made it disappear within minutes. Also thanks to Rana Saitta of NCCBI

v



vi

for organizing the annual events and the efforts to keep all PhD students in the program
on track.

Stressful times are an inherent part of doctoral studies possibly because it is supposed
to help expand one's limits. Especially now that I'm done with it, I think it might have
been awkward to finish a PhD without much stress. Irrespective of mounting work
pressure at times, I was able to maintain a relaxed and largely positive attitude towards
not only work, but also life in general thanks to my colleagues who are also good friends.
A short and obviously non-exhaustive list of my good friends at INI who have always
been supportive would be: Jakob Buhmann, Gaby Michel, Julien Martel, Sergey Burnos,
Jonathan Binas, Turlough Neary, Julia Buhmann, Federico Corradi, Lorenz Mueller and
Richard George. I was lucky to have good friends outside the institute as well who have
been equally supportive. Justin, Rounak and Julian are some of them. Thank you for
making my stay in Zurich highly enjoyable. That could mainly be due to an interesting
sense of humor that all of us share, in addition to their kindness.

Thanks to my aunt and uncle Bruno for hosting me at their beautiful house in the
alps several times over the last few years. I haven't been able to visit as frequently as I
would have liked to, but those visits have always been a breath of fresh air.

Many thanks to my flatmates in Zurich, Gian-Alberto and Slavtcho, for helping to
maintain a peaceful and relaxed atmosphere at our shared apartment. I would also like
to thank my cofounders Julian and Bo, for their patience and understanding in the final
phase of my thesis work, especially because during the last few months I have been
distributing my time between our new startup and wrapping up this dissertation. Also
thanks to Federica Assenza and Federico Corradi for proofreading the Italian version
of the abstract, which albeit in a small way, added a bit of an authentic Italian flavor,
which I have been enjoying through out my stay in Europe.

Special thanks go to my two brothers who are always just a phone call or a text
message away, although we are thousands of miles apart. Thank you for keeping our
parents happy all the time and being there for me always. Last but not least, my
heartfelt gratitude goes out to my parents who are my ultimate support system and
primary source of inspiration. I was able to reach where I am today only because you
let me stand up on your shoulders.



Contents

1 Introduction 1

1.1 Workflow: EM-image-driven neuroscience research . . . . . . . . . . . . . 3

1.2 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 EM imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Image registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Image analysis in neuroscience . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

I Methods for analysing electron microscopy images 9

2 Thickness and anisotropy estimation of EM sections 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Image similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Preprocessing: contrast adjustment and registration . . . . . . . . . . . . 15

2.6 Estimation of section thickness . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Distance-Dissimilarity function using Gaussian process regression . . . . . 17

2.8 Estimation of stretching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.9 Validation of thickness estimation using AFM . . . . . . . . . . . . . . . . 21

2.10 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 2D neuron slice segmentation using topological constraints 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Graphical representation of the segmentation problem . . . . . . . . . . . 33

3.3.1 Probability maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 Graph of over-segmented object boundaries . . . . . . . . . . . . . 33

3.4 Problem representation using binary state variables . . . . . . . . . . . . . 35

3.5 Integer Linear Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 ILP constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Low-level constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.2 Topological constraints . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 ILP objective function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



Contents viii

3.7.1 Structured learning of cost function parameters . . . . . . . . . . . 42
3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

II Investigation of effects due to sensory exposure on zebra finch
HVC using EM images 51

4 Introduction to vocal learning in zebra finch 53
4.1 Behavioural basis of song learning . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Song system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Effects of sensory exposure on MSB formation 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1.2 Neuro-anatomical changes and learning . . . . . . . . . . . . . . . 59
5.1.3 Experience-dependent learning and MSBs . . . . . . . . . . . . . . 59

5.2 Objectives of EM image analysis . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Experiment with three groups of juveniles . . . . . . . . . . . . . . 62
5.3.2 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.3 Identification of MSBs . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.1 Ambiguities in MSB identification . . . . . . . . . . . . . . . . . . 64
5.4.2 Number of MSBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.3 Number of synapses per MSB . . . . . . . . . . . . . . . . . . . . . 67

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Discussion 75
6.1 Methods in EM-image-driven neuroscience research . . . . . . . . . . . . . 75
6.2 Neuroimaging using EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Image post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Manual annotation and automatic segmentation of images . . . . . . . . . 79
6.5 Hypotheses testing based on image data . . . . . . . . . . . . . . . . . . . 80
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Chapter 1

Introduction

Understanding how the brain works requires analysing its structure and behavior at
different conditions and spatial scales. Several decades ago neuroscientists began to
analyze the internal structure of the brain at a macroscopic level using histological
methods that lead to identification of brain regions. Work of Cajal and Golgi in analyzing
the brain at a microscopic scale around early 1900s formed the foundations of modern
neuroscience. It was Cajal who first proposed based on his observations that the nervous
system is made up of individual cells which were later named neurons. This lead to
finding connected networks of branching neurons in the brain.

Modern imaging techniques have enabled neuroscientists to observe anatomical prop-
erties both in static and dynamic settings at different spatial resolutions. For instance,
fMRI imaging [59] allows spatio-temporal changes in‘blood oxygen level dependant con-
trast’ to be observed, which is known to be correlated with neuronal activity. This is a
non-invasive technique applicable to human subjects giving rise to images with a spatial
resolutions around a cubic millimeter.

Developments in optical microscopy have enabled imaging at a resolution in the or-
der of hundreds of nanometers. Combined with fluorescent imaging techniques, light
microscopy is now capable of directly resolving neuron connectivity with the use of neu-
rotracers [78]. Neurotracers result in fluorescence signals in neurons that have synaptic
connections between them. Two-photon microscopy [15] is an instance of optical mi-
croscopy combined with fluorescent microscopy that enables imaging of living tissue up
to about 1mm in depth.

Recent developments in ‘expansion microscopy (ExM)’ [11] enables conventional light
microscopy to observe structures much smaller than what is allowed by the limitations
of wavelength of light. The sample preparation protocol in ExM increases the physical
size of the specimen up to five times its original size using a polymer. Therefore the
traditionally cited resolution of 200 nm can be brought down to 40 nm which suffices to
visualize synaptic vesicles.

Electron microscopy (EM) is an invasive technique that cannot be used on living
cells as it requires biological tissue to be prepared according to special protocols that
include staining the specimen with molecules that contain heavy metals. Currently,
this is the only imaging technique that provides resolutions high enough to visualize
neuroanatomical structures such as synapses having a spatial magnitude spanning a
only few nanometers.
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Chapter 1. Introduction 2

Neurons are able to transmit and receive impulses to and from other neurons. The
space (or ‘junction’) through which a pair of adjacent neurons are able to communicate
is referred to as a synapse. This communication is achieved by the release of neurotrans-
mitters stored in vesicles that traverse from the neuron membrane at the presynaptic
side to the receptors located on an adjacent neuron’s membrane at the postsynaptic side.
Synaptic connections between neurons allowing complex network behavior are known to
play an important role in learning and memory. Therefore ,the ability of EM to obtain
images with resolution high enough to observe synapses makes it an invaluable tool for
neuroscience. Furthermore, EM has also been used to understand the morphology of cell
types in different brain areas in different organisms. It also allows us to observe other
neuroanatomical structures such as mitochondria, synaptic vesicles and microtubules.

Figure 1.1: Part of an ssSEM image of a section obtained from zebra finch HVC. Image
size: 550 × 670 pixels with pixel size 5 nm × 5 nm. (Tissue section for imaging was
provided by Ziqiang Huang.)
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1.1 Workflow: EM-image-driven neuroscience research

Volumetric EM images of a nervous system typically go through a sequence of steps.
Once the biological tissue to be imaged is extracted, it has to go through a sample
preparation protocol. This step ensures the sample is stable and ready to be cut in this
sections. Once the sample is cut in thin sections a staining protocol is followed so that
the sample produces an informative image subject to an electron beam. Depending on
the type of EM, the thin sections have to be laid out on a suitable platform. Modern
EM equipment allow automatic image acquisition for hundreds of sections positioned
in series. Usually an individual section is too large to be imaged at one go. In such
cases overlapping image patches are acquired and have to be stitched together using
image processing tools. For serial section volumetric EM images, in addition to stitching
them to form an image per individual section, they also have to be aligned across the
Z-axis (orthogonal to the direction of cutting). To compensate different exposure levels
occurring in different parts of the image, it is important to perform brightness and
contrast adjustments. In situations where the exact volume corresponding to each section
is of interest, section thickness estimation methods are deployed. Thus obtained EM
images are ready to be annotated and analyzed.

1.2 Sample preparation

In order to examine biological tissue using EM, it has to be converted into a dry and
stable material that interacts with an electron beam giving rise to the desired images.
For ssTEM and ssSEM imaging in a vacuum, the sample preparation process typically
involves the following steps [19, 26]:

� Fixation Biological tissue has to be transformed into a stable and preserved state
by cross-linking macromolecules with the use of aldehydes.

� Dehydration In order to prevent any damage caused to the EM equipment when
operating in a vacuum, the specimen has to be dehydrated. This is done by
gradually substituting water in the specimen with a solvent such as ethanol or
acetone. Dehydration also helps to preserve the specimen.

� Embedding The specimen needs to have high structural integrity and mechanical
strength if it has to be sectioned or etched or fractured. To achieve this hydrophobic
epoxy resins can be infused to the specimen followed by polymerization.

� Thin sectioning Serial section electron microscopy (ssEM) is the standard ap-
proach of obtaining volumetric image stack of a specimen which has dimensions
of around tens of micrometers. This technique involves cutting the specimen into
thin slices using a thin blade mounted on an equipment referred to as a microtome.
Typical thickness of such a section varies from 30 nm to 80 nm. Sectioning is known
to cause squashing of the specimen. Though occasional, it may also cause torn or
missing sections.

� Staining EM image formation is based on the interaction between the specimen
and a high energy electron beam. Therefore, the contrast between different struc-
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tures (e.g. neuron membrane vs. cell interior) depends on how differently they
interact with the electron beam. This step involves introducing heavy metal ions
(e.g. lead, uranium) that preferably bind to different cellular structures which
results in different contrast levels.

1.3 EM imaging

The operating principle of EM has some similarities to light microscopy (LM) except that
instead of a beam of light EM uses a beam of electrons along with matching components
to handle (e.g. focus and detect) electrons. The resolution of the images taken by
LM is limited by the wavelength of light. Since EM uses electrons with much smaller
wavelength as the source of light, it is able to image at nanometer resolution.

Serial Section Transmission Electron Microscopy (ssTEM)

An electron source emits an electron beam that travels along a vacuum guided and fo-
cused by electromagnetic lenses and goes through a thin specimen and reaches a detector
which captures the image. Depending on the type and density of material present in
the specimen some electrons are scattered away from the beam leaving a subset of the
original beam reaching the detector. Different parts of the image appear with varying
intensity according to the electron scattering occurred at the corresponding points of
the specimen.

In ssTEM [35], several sections which usually correspond to a series of adjacent
sections obtained from a sample are automatically imaged using the above technique.
Therefore it’s a common high throughput image acquisition method for obtaining volu-
metric image data of brain tissue. Each section typically can have up to a few hundreds
of micrometers in length and width. These sections have to be thin enough to transmit a
sufficient number of electrons to form an image. For sections obtained from brain tissue
the thickness typically ranges from 40 nm to 70 nm.

Serial Section Scanning Electron Microscopy (ssSEM)

In SEM, a high energy electron beam interacts with a solid sample. This electron beam
raster scans the surface of the specimen. The interaction between the specimen and the
high energy electron beam gives rise to backscattered electrons and secondary electrons
which are received at separate detectors. The signals generated by the inputs to the
detectors are then used to create an image of the scanned surface. Similar to ssTEM,
currently available ssSEM [38] equipment allows for high throughput imaging where a
series of thin sections can be automatically scanned. The thickness of the sections used in
ssSEM can be larger than in ssTEM because the beam does not have to be transmitted
through the entire specimen. However in order to obtain a good SNR and to retain
as much information as possible along the direction of cutting, the typical thickness of
sections are similar in magnitude to those used in ssTEM.
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Focus Ion Beam Scanning Electron Microscopy (FIB-SEM)

This imaging technique combines serial etching of a specimen block with scanning elec-
tron microscopy [49]. Etching the surface of a specimen is performed using a focused
beam of ions that can be controlled with nanometer precision. Therefore, when com-
bined with SEM, ion beam milling can be used to acquire volumetric EM images. The
spatial interval between two adjacent surfaces of which images are acquired typically
ranges from 5 nm to 10 nm which results in nearly isotropic volumetric images.

The main advantage of this technique is the high resolution obtainable along the axis
perpendicular to the cutting plane compared to ssTEM and ssSEM. This is because the
milling performed by a focus ion beam allows to etch thinner slices of specimen than
what can be sectioned using a diamond knife of an ultramicrotome.

However, the size of the specimen that can be used in FIB-SEM is typically less
than 10 µm in each dimension. This is much smaller compared to ssTEM and ssSEM.
Therefore it’s less suitable for volumetric imaging of whole brains than the other two.

1.4 Image registration

Automated electron microscopes allows us to image hundreds of large tissue sections.
Large sections are usually imaged as a set of smaller tiles that have overlapping bound-
aries with their neighbours. An EM image of an entire 2D section has to be obtained by
aligning and stitching together these image tiles. To reconstruct an accurate 3D EM im-
age of the tissue, these 2D sections have to be aligned with respect to each other. Apart
from alignment, image registration process has to also correct for nonlinear deformations
of image tiles that might be caused during sectioning and imaging. The state of the art
registration algorithm proposed by Saalfeld et. al. [68] jointly performs 2D stitching,
3D alignment and correction for deformations. Their approach is based on an initial
alignment obtained by matching image landmarks of near by sections. These landmarks
are defined using SIFT image feature extraction method [2]. Further deformations are
estimated using local block matching. Afterwards, this initial alignment is optimized
by modelling each section as a mesh of springs where parts of the image are allowed to
translate and rotate subject to rigidity limits imposed by springs attached to it.

1.5 Image analysis in neuroscience

Methods and tools used for analysing EM images can be broadly categorized as follows:

(a) Post-acquisition image processing methods

(b) Visualization tools

(c) Annotation tools

(d) Semi-automatic segmentation methods

(e) Automatic segmentation methods

(f) Proofreading tools
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Image postprocessing is required to compensate for deformations and distortions, stitch
images together to form larger sections and align serial sections to form 3D image vol-
umes. Once post-processing is done, the images are ready to be visualized and annotated.

Annotation of neuroanatomical structures and neurons in EM images are extensively
used in anatomical and functional studies. Some of those studies involve quantitative
comparisons of structural changes in the brain between groups of animals that can
be subject to different experimental conditions. Such experiments are conducted to
investigate the underlying mechanisms of learning and memory.

Neurons communicating with other neurons via synaptic junctions form networks of
neurons that result in complex behaviors. There have been several attempts to build 3D
reconstructions of such neuronal circuits from EM images of the brain during the last
couple of decades. Neuronal circuit reconstruction mainly facilitates investigations into
relationships between network structure and function, apart from anatomical properties
of the networks themselves. Such studies have coined a subfield within neuroscience
referred to as ‘connectomics’.

Connectomics research depends on large EM datasets from which 3D neuronal cir-
cuits are derived. To this date most of such efforts are performed manually which is
an extremely tedious process. When connectivity is the main concern, it suffices to an-
notate and connect the center of each neuron in a stack of serial section EM images.
This is referred to as skeleton tracing and it’s less tedious in comparison to annotating
neuron boundaries. CATMAID [67] and KNOSSOS [36] are manual annotation tools
that are being used to trace neuron skeletons in large datasets. However, to obtain a
morphologically accurate representation of each neuron, the boundary of each neuron
has to be outlined in each EM section. TrakEM2 [10] is a tool that can be used for this.

The vast amount of data that have to be annotated in order to reconstruct neural
circuits require months of work from hundreds of people. On one hand researchers use
crowd sourcing methods to scale up manual annotation efforts. Eyewire and Ariadne are
examples of such efforts. The other way to make the annotation process more efficient
is to use methods from machine learning and computer vision to achieve some level of
automation. Most of the methods that can be used for automatic neuron segmentation
rely on pixelwise probabilities obtained from learned classifiers.
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Table 1.1: Image analysis, segmentation and annotation methods for EM images of brain
tissue

Name of method Description Level of automation

CATMAID [67] Neuron skeleton tracing manual
Elegance [86] Neuron skeleton tracing manual
KNOSSOS [36] Neuron skeleton tracing manual
SSECRETT [41] Neuron skeleton tracing manual
Reconstruct [17] Neuron morphology annotation (3D) manual
TrakEM2 [10] Neuron morphology annotation (3D) manual
ITK-SNAP [87] Neuron morphology segmentation (3D) semi-automatic
NeuroTrace [42] Neuron morphology segmentation using (3D) semi-automatic
Icon [27] Neuron morphology segmentation (3D) semi-automatic
ILASTIK [73] Pixel classification and clustering. semi-automatic

Segmentation of synapses, membranes and neurons.
GALA [58] Dense neuron segmentation (2D and 3D) automatic

using superpixel agglomeration
Segmentation Fusion [82] Dense neuron reconstruction automatic
SOPNET [23] Dense neuron reconstruction (3D) automatic
RhoANA [77] Dense neuron reconstruction (3D) automatic

1.6 Thesis organization

This thesis is organized in two main parts. The first part containing chapters two and
three focuses on image processing and computer vision method development. Chapter
2 presents a method that can be used to estimate the XY anisotropy and Z thickness
of a serial section EM image stack. It also provides details of a validation dataset we
created using atomic force microscopy which we used to compare the performance of
our method with other methods. Chapter 3 describes a method to segment 2D neuron
slices on individual EM sections using topological constraints. According to the results
obtained, this approach lowers the number of segmentation errors compared to other 2D
segmentation methods.

The second part of the thesis provides an image driven analysis of a neuroanatomical
changes caused by experience dependent learning. Chapter 4 provides an introduction
to zebra finch vocal learning and Chapter 5 contains the experimental details and the
analysis performed along with the results obtained. Chapter 6 is an overall discussion
about the thesis including an outlook for the work carried out as part of this dissertation.
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Methods for analysing electron
microscopy images
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Chapter 2

Thickness and anisotropy
estimation of EM sections

2.1 Introduction

Electron microscopy (EM) has enabled imaging of nano-scale neuroanatomical structures
such as synapses. Images acquired using EM have been instrumental in neuroscience
research because of the level of information provided which is unmatched by any other
imaging technique. Serial section Scanning Electron Microscopy (ssSEM) and serial
section Transmission Electron Microscopy (ssTEM) are used to inspect tissue volumes on
the scale of tens to hundreds of micrometers in each dimension. Tissue sections suitable
for ssEM typically have a thickness that ranges from 30 nm to 70 nm. These thin serial
sections are cut from a specimen embedded in resin using a microtome which is equipped
with a diamond knife. It has been quantified that the actual thickness of the sections
obtained can be different from the expected thickness by up to 20% [20]. Another EM
technique used to obtain volumetric image data is Focused Ion Beam Scanning Electron
Microscopy (FIBSEM) which allows much finer sectioning (e.g. 5 nm ∼ 10 nm) compared
to what is currently achievable with ultramicrotomes. The problem of section thickness
variation is also observed in FIBSEM data [49].

Image processing methods commonly implicitly assume isotropy of physical struc-
tures along the imaging plane [24]. However, sources of anisotropy (stretching) in the
imaging plane include anisotropy intrinsic to the specimen, effects of sample handling
and cutting, and imperfections in microscope calibration. We focus on the image anal-
ysis problem of determining the overall stretching, without distinguishing between the
individual sources of stretching.

In this work we address estimation of thickness and stretching by learning a function
f that captures the variation of image statistics. This function can be used to infer
the spatial distance along the Z axis between pairs of images in an image stack, and
the anisotropy of the imaging plane XY. To compute predictive distributions of spatial
distance for new, unseen images we use Gaussian Processes (GPs) [64] to perform a
non-parametric Bayesian regression. We also use GP regressors to estimate stretching.

Section thickness estimates can be used to correct volume estimates along the Z axis
(perpendicular to the cutting plane), which is useful for producing more accurate 3D

11
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reconstructions of imaged tissue. Furthermore, the accuracy of counts of objects such as
synapses normalized per unit volume can be improved using both the thickness estimates
and the stretching estimates. For instance, accurate section thickness estimates can be
used when applying the disector method [75] which is one of the most commonly used
methods to get an unbiased estimate of objects (eg. synapses) within a 3D volume.
Disector method essentially quantifies the number of objects of interest in a virtual 3D
volume by sampling a few consecutive 2D sections of the volume. Correct estimates
of section thickness is highly beneficial in such cases to improve the accuracy of the
quantifications thus obtained.

For any method that uses the known XY resolution to model the absolute spatial
distance between sections (including [74] and our method), it is important to have an
estimate of the anisotropy along the XY plane. Such XY anisotropy lead to different
statistics along the two axes. If unaccounted for, the disparity of these statistics will
introduce inaccuracies in the results obtained by methods that readily assume similar
statistics along the two axes. Our solution to this problem is described in Section 2.8.

In order to validate the thickness estimates, we have directly measured the thickness
of a set of EM sections using atomic force microscopy (AFM). We have made the valida-
tion dataset publicly available as a benchmark to evaluate section thickness estimation
methods.1 Validation results and estimates for z -section thickness and xy-anisotropy for
FIBSEM, ssTEM and ssSEM data sets are discussed in Section 2.10.

Publication and source code

The method proposed in this chapter is intended to be published in an article titled “Es-
timation of Z-thickness and XY-anisotropy of electron microscopy images using Gaussian
Processes” (Ambegoda et al.). The code for running the experiments described in this
chapter is publicly available.2

1https://github.com/thanujadax/ssSEM AFM thickness
2https://github.com/thanujadax/gpthickness
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Figure 2.1: In a given ordered series of EM images, we assume that the distance between
the section i and section i+ 1 is the same as the thickness of section i.

2.2 Related work

Methods used to indirectly estimate EM section thickness can be broadly categorized
into three types:

1. Thickness estimation using ellipsometry

The earliest thickness estimation method suggested in [61] uses the reflected color
of the thin sections floating on water to coarsely estimate the thickness of the
sections. Here, thickness estimation is done by matching the color of the sections
with a predetermined color code that relates the colors to different thickness values.
This method provides a coarse estimate with an accuracy around 30 nm. The
minimum thickness that can be estimated is about 50 nm. This method is still
commonly used to get a first idea of the thickness of sections being cut.

2. Thickness estimates by detecting special structures within the images

In [72], accidental folds of the thin tissue section seen in the electron micrograph are
used to determine the thickness of that section. Cylindrical diameters method was
proposed in [18] where use nearly “cylindrical” mitochondria to get an estimate
of section thickness under the assumption that we are able to find cylindrical
mitochondria that exist vertically parallel to the cutting direction.
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3. Computational approaches using image statistics

In [74] the relationship between pairwise image dissimilarity and distance is com-
puted as the average of discrete data points and the estimated thickness of a new
section is interpolated from these. Both [74, 31] assume that locally, images are
realizations of an isotropic and rotationally invariant process. By contrast, we
adopt an approach that is less affected by sample anisotropy in the xy plane. In
[31] the positions of the images along the Z axis are iteratively corrected to seek a
consistent solution in which adjacent sections have an optimal gap (or thickness)
between each other. The optimal solution adjusts the positions of the images such
that the distance-similarity curve is maximally smooth after a fixed number of
iterations. The method presented in this chapter falls into this category as well.

2.3 Contributions

Ziqiang Huang and Thomas Templier from the Institute of Neuroinformatics, University
of Zurich and ETH Zurich provided samples used for microscopy. FIBSEM images and
some of the ssSEM images were provided by Ziqiang Huang. Atomic Force Microscopy
was performed by Jozef Adamcik of the Department of Health Science and Technology,
ETH Zurich. Gaussian Process modeling was done by Julien Martel of the Institute of
Neuroinformatics, University of Zurich and ETH Zurich.

2.4 Image similarity

An image stack obtained from ssEM corresponds to consecutive sections obtained from a
3D volume which in our case is typically a part of brain tissue prepared for EM imaging.
As illustrated in Figure 2.2, images which are close to each other in the volume tend to
be more similar to each other than the ones which are further apart. This is because
the anatomical structures that have been imaged vary their visual properties smoothly
in the 3-dimensional space compared to the resolution of the imaging. This correlation
between the similarity of a pair of sections and the distance between them has been used
in [74] to build a predictive function to estimate section thickness. Our approach is also
based on the relationship between image similarity and the distance between them. We
differ to [74] in the way we learn the predictive function.
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(a) (b) (c) (d)

Figure 2.2: Images taken from a single stack of ssSEM images at different positions of the Z
axis where Z axis of the image stack is perpendicular to the cutting direction. The expected
distance between two sections at adjacent Z positions is approximately 70 nm. Each image
corresponds to an area of 2µm × 2 µm. (a) Image at position z = 1. (b) Image at position
z = 2. (c) Image at position z = 5. (d) Image at position z = 15. It can be observed that the
biological structures such as neuron membranes, mitochondria, synapses and vesicles displayed
in the images are similar when the images are close to each other. When the distance between
two sections increase there is less similarity between them.

2.5 Preprocessing: contrast adjustment and registration

Raw images obtained from EM might have different exposure levels at different parts
of the image, even when the image is a single tile as shown in Figure 2.3a. The general
approaches to contrast enhancement is based on stretching the distribution of the pixel
intensity values so that there is enough difference of intensity between regions that
should show high contrast with respect to each other. One such common approach is
histogram equalization. Here an optimal transformation is applied to the entire image
to improve its contrast. When the original image contains regions of different contrast
levels, this approach is not able to sufficiently enhance contrast. To overcome this
problem, we use contrast limited adaptive histogram equalization (CLAHE) [91] to make
the contrast level more homogeneous over the entire image as illustrated in Figure 2.3b.
Adaptive histogram equalization (AHE) performs contrast adjustments for each pixel
using a transformation function derived using the histogram around that pixel. Contrast
limitation is used to reduce the amplification of noise while performing AHE.

After acquiring the images from a series of images from the same volume, the images
have to be registered with each other. Registration process makes sure that each image
is optimally aligned with each other along the entire stack of images. Normalizing
the contrast levels and proper registration is a very important preprocessing step in
any method that’s based on calculating the similarity of images because registration
problems and contrast variations will introduce an erroneous dissimilarity in addition to
the expected dissimilarity that is caused by the distance between the sections.
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(a) (b)

Figure 2.3: (a) Raw ssSEM image with varying contrast at different locations. The top left
quarter of the image has higher contrast compared to rest of the image. The bottom right
quarter seems to be over exposed. (b) After performing contrast limited adaptive histogram
equalization [91]. Both images are of size 1350× 1350 pixels with each pixel of size 5 nm× 5 nm.

2.6 Estimation of section thickness

We propose to learn a function of pairwise image dissimilarity to estimate the distance
between the pair of sections. Our approach adapts the work of [74] with the variation
described below. What we refer to as section thickness is the distance between a pair of
adjacent sections in a series of volumetric images (Figure 2.1).

We assume that local structures in the images vary smoothly in all directions at a
spatial scale larger than the section thickness. Hence, the dissimilarity SIA,IB between
two parallel images IA and IB only depends on the spatial distance DA,B between them.
To learn the variation of image dissimilarity as a function of the distance we first have
to obtain distance-dissimilarity data points. This can be done by extracting images
at known different distances along the X and Y axes of the imaging plane: DA,B =
f(SIA,IB ). From an original image I, two image patches A and B which are a distance
DA,B = n × ∆x away from each other can be generated by extracting image patch A
centered on pixel coordinates (xi, yi) (on image I) and an equally sized image patch B
centered on pixel coordinates (xi + n ×∆x, yi) on image I. Here ∆x is the length of a
rectangular pixel along the x axis and n is the number of pixels.

As the dissimilarity measure SIA,IB we use the standard deviation of pixel-wise in-
tensity differences (SDI) defined in Equation (2.1), similar to [74].

SIA,IB =

√
1

N

∑
x,y

(IAx,y − IBx,y)2 (2.1)

We learn two separate distance-dissimilarity functions fx(S) and fy(S) as described
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in Section 2.7 using images generated along the two axes X and Y . After estimating the
relative stretching γ between the two axes (Section 2.8), we use one of these functions
to estimate section thickness depending on the value of γ. For most accurate results,
the regressor should be the one that has been learned along the direction of minimal
stretching. Since we are generally pointed to a possibility of samples being compressed
in one direction relative to the other due to effects of tissue embedding/handling/cutting
we recommend using the function corresponding to the lesser compressed axis. Deter-
mination of the direction along which maximum stretching is described in Section 2.8.

2.7 Distance-Dissimilarity function using Gaussian process
regression

The function f(S) we aim to learn takes the dissimilarity S of a pair of images and
returns the distance D between those two images:

D = f(S) (2.2)

In order to learn such a function, a training data set in the form of distance-
dissimilarity tuples has to be created. Given a set of images we can create such a data
set of N data points {(Di, Si)}i∈{1,...,N} using the sliding window approach suggested
above. Such a set of tuples is generally referred to as labeled training data. We can use
these data points to perform regression which results in the desired function f(S). Once
f(S) is learned, it can be used to predict distances D between a new pairs of images for
which the similarity can be directly calculated.

Regression

The general approach for learning a parametric regression function is to first assume a
specific function f(S; w) with a set of parameters w to be determined using training
data. Therefore, the regression problem essentially becomes an optimization problem
that learns the best values for the set of parameters. This is done by minimizing a
sample loss Li for each training data point that provide input values Si and output
values Di which are to be mapped by f(S; w). For instance, in least squares regression
the following optimization problems gives the optimal parameter vector w∗:

w∗ = argmin
w

∑
i

‖Di − f(Si; w)‖22. (2.3)

An alternative formulation of the regression problem is provided within a Bayesian
framework. The regression task then becomes equivalent to inferring the posterior dis-
tribution p(w|D,S) of the parameters given the training data, the prior distribution of
the parameters p(w) and the likelihood p(D|S,w). Here, the following underlying model
can be assumed to give rise to the data D,S:

D = f(S; w) + ε, (2.4)

where ε represents the noise that explains any deviations of D from the mapping f(S,w).
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The mostly likely regressor is then given by the mode of the posterior p(w|{Di, Si}i) and
the uncertainty of the prediction will be given by the standard deviation of the posterior.

An obvious limitation of a parametric regression is the need to have f(S; w) ex-
plicitly specified. In general for practical problems this the functional form of f not
available a priori. Therefore, any formulation of f(S; w) in a parametric setting would
be influenced by strong underlying assumptions about the process that gives rise to the
data.

Gaussian Process regression

Our regression problem can be formulated in function space [64] using Gaussian process
regression [84]. A Gaussian process (GP) can be defined by a set of random variables for
which any finite subset has a joint Gaussian distribution. A GP is fully determined by
a mean function m(S) that provides information about the mean values:

m(S) = E
[
f(S)

]
, (2.5)

and a covariance function k(S, S′) that captures the covariance of the process f(S):

k(S, S′) = E
[(
f(S)−m(S)

)(
f(S′)−m(S′)

)]
, (2.6)

where E denotes the expectation. The unknown regressor f(S) is then a realization of
the following GP:

f(S) ∼ GP
(
m(S), k(S, S′)

)
. (2.7)

In order to perform Gaussian process regression [85], only a family of functions for m
and k have to be specified. These functions do not enforce a form for f . The covariance
function k specifies a prior over the space of functions. Furthermore, hyperparameters
for the mean and covariance functions can be learned from data.

For our model, we choose the covariance k(S, S′) function to be a squared exponential
(SE):

k(S, S′) = σ2 exp
(
− 1

2 l2
(S − S′)2

)
(2.8)

SE based covariance function is a smoothness prior on the functions determined by
the length-scale l and signal standard deviation parameter σ. For the mean function
a function in the form m(S) = a Sb was chosen for the distance measure SDI which
empirically behaves as a power law increase starting from (0, 0).

m(S) = a Sb (2.9)

For a distance measure that starts from a constant value at zero distance (e.g. Pearson
correlation coefficient) and drops with increasing S according to a power law, a function
in the form given by equation (2.10) can be used.

m(S) = c− a Sb (2.10)

Hyperparameters θ = (σ, l, a, b)T are learned from the training data by optimiz-
ing the marginal likelihood using non-flat hyperpriors over the mean hyperparameters.
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Figure 2.4: Graph of distance D vs. image dissimilarity s, D = f(S), used for the estimation
of section thickness and stretching. Shown are the training data (blue dots), the mean (bold
line), and multiple standard deviations σ of the Gaussian Process (GP) predictive distributions
(darkest to lightest orange) 2 σ(95%), 3 σ(99.7%), 5 σ(99.94%).

These hyperpriors are only used to initialize the optimization but are not restrictive.
Both hyperpriors p(a) = N (µa, σa) and p(b) = N (µb, σb) are Gaussian distributions
whose means (µa, µb) and standard deviations (σa, σb) are determined using a standard
nonlinear regression of a function D′ = a · S′b using a Levenberg-Marquardt algorithm.

To predict unknown D values for given S values for new pairs of images by per-
forming GP regression, the marginal likelihood of the GP has to be computed. Then
a predictive distribution is produced for output D at each test input S. Figure 2.4
shows an instance of the mean and variance of these predictive distributions plotted as
a distance-dissimilarity curve.

2.8 Estimation of stretching

The learned distance-dissimilarity function can be utilized to estimate the stretching
coefficient γ, defined as the deviation from isotropy of the image along one axis relative
to the other. Consider a small image patch with pixel intensity gradient ~g at an angle
θ relative to the x axis (Figure 2.5). The intensity difference ∆pi at pixel i between
two image patches separated by one pixel (∆x) along the x axis is given by: ∆p =
pi−pi‖~g‖ cos θ∆x, where pi is the pixel intensity at pixel i. It follows from Equation (2.1)
that the dissimilarity between these image patches (ignoring boundary conditions) is:

S(Ix,y, Ix+∆x,y) = ∆x ‖~g‖ cos θ

√√√√ 1

N

N∑
i=1

p2
i (2.11)
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Figure 2.5: Left: FIBSEM image of 700 × 700 pixels. Right: An image patch with gradient ~g
located at pi with an angle θ w.r.t to the x axis.

As shown by Equation (2.11) the dissimilarity is directly proportional to the local gra-
dient of the image patch. We use this result to estimate γ along one axis relative to the
other (because stretching along one axis alters the component of the gradient along that
axis).

To estimate γ along the y axis relative to the x axis (i.e. γyx) we perform the following
steps: First we learn the distance-dissimilarity function fx(S). To do so, pairs of images
that are displaced from one another by n pixels along the x axis can be used. Then,
for one pair of images separated by one pixel along y axis (distance ∆y), the distance
can be estimated using fx(S). This estimate gives n̂yx, where ∆̂y = n̂yx ∆x. This is the
expected length of a pixel along y axis using the distance-dissimilarity statistics along x
axis. Therefore, n̂yx captures the linear scaling of y axis with respect to x axis in terms
of distance-dissimilarity statistics. The stretching coefficient γyx of y axis relative to x
axis is defined as

γyx =
∆y

∆̂y
=

∆y

n̂yx ∆x
=
ayx
n̂yx

(2.12)

where ayx is the pixel aspect ratio ∆y/∆x. For a pixel aspect ratio of 1, γyx > 1 implies
stretching of the y axis relative to the x axis. Once the γyx is known, we suggest to
use the regressor corresponding to higher γ (lower relative compression) as the distance-
dissimilarity function for section thickness estimation. For instance, provided γyx < 1,
the regressor fx(S) should be used since the linear compression of y axis is potentially
more than that along x axis and therefore fx(S) will result in a more accurate thickness
estimate.

However, the exact orientation of the X and Y axes are arbitrary. In order to find
the directions of maximum and minimum stretching, γyx for a range of orientations has
to be calculated. The lowest value of γ∗yx corresponds to the pair of orthogonal axes
where X has the minimum stretching along its direction.
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Figure 2.6: (a) shows four images with an artificially generated pattern featuring locally radial
gradients. From left to right the images underwent a simulated linear stretching (in this case,
compression) along the y axis while the x axis remained unchanged. The legend specifies the
normalized size w×h of the image. (b) shows the distance-dissimilarity plots for shifted versions
of the radial gradient pattern along the horizontal axis and (c) along the vertical axis.

2.9 Validation of thickness estimation using AFM

Validation of EM section thickness estimation methods is limited by the unavailability
of a standard data set with accurately measured thickness. We use Atomic Force Mi-
croscopy (AFM) [6] to produce such a dataset for validation of thickness estimates using
our method and to compare with results from other methods. AFM is a scanning probe
microscopy technique that can be used to measure the 3D surface profile of a sample
at nanometer resolution. The AFM probe which is a sharp tip with a typical radius
of 5 nm ∼ 50 nm scans over the surface while measuring changes in the atomic forces
between the sample and the tip. This allows us to directly measure the thickness of
ssEM sections which are placed on silicon wafers.

As shown in Fig. 2.8a thickness measurements were obtained using AFM along three
distinct axes along each EM section. For each section, the average difference of these
three height profiles (Fig. 2.8b) between the surface of the silicon wafer and the surface
of the EM section is taken as the measured thickness.
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Figure 2.7: EM image of several trapezoid shaped EM sections placed on a silicon wafer. The
image was obtained at a pixel resolution of 2.2 µm× 2.2µm.

(a) (b)

Figure 2.8: Figure 2.8a is an AFM image of a section prepared for EM. The pixel intensity
corresponds to relative height difference from a reference point. Here the reference −20 nm
corresponds to the level of the silicon wafer on which the sections are mounted. We set this level
to zero in order to obtain the absolute thickness values. For each section we obtain measurements
along 3 axes (green, red and blue) as shown in the image. (b) shows the measured height
differences relative to the height of the silicon wafer along each of the 3 colored lines in Figure
2.8a.
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2.10 Results and discussion

Anisotropy estimation
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Figure 2.9: (a) Estimated section thickness (D) for a FIBSEM stack of 500 consecutive images
(expected: D ≈ 10 nm) and (b) Estimates of the stretching coeff. γyx for a FIBSEM stack of
490 sections.

To validate the estimation of stretching coefficient γ we used different linearly stretched
versions of a synthetic image as shown in Figure 2.6a. The original image was composed
of bright circular objects with radial gradients. Then the image was re-scaled with known
γ along the y axis (vertical) down to different sizes. Using equation (2.12) we recovered
γ with an average accuracy of 97.3% for a linear compression of 75% of the original size
(Table 2.2).

Estimated γ for real data sets ssTEM [1] and FIBSEM are summarized in Table
2.2. The FIBSEM dataset with 500 sections was from songbird brain tissue obtained at
5 nm × 5 nm resolution on the xy plane with expected section thickness of 10 nm. The
entire FIBSEM stack has the dimensions 8 µm× 8 µm× 5 µm. The ssTEM dataset of 20
serial sections was obtained from the same brain area. We note that FIBSEM shows a
higher γ (corresponds to lower linear compression) compared to ssTEM. This correlates
with the fact that unlike in ssTEM, FIBSEM doesn’t make use of a diamond knife for
thin sectioning which is a potential source of linear compression. Instead it uses an ion
beam to successively burn away thin layers.

As mentioned in Section 2.8, the image axis X and Y are arbitrarily chosen. There-
fore we estimate the maximum stretching factor γ∗yx for a range of possible axes by
rotating the original images up to 180°. Anisotropy estimates for a range of such ro-
tations is shown in Figure 2.11. For better thickness estimation accuracy, we argue
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that the regressors obtained from the images that are rotated to give the maximum γyx
have to be used. At this rotation the X axis is minimally stretched compared to the Y
axis. This argument is more effective when the images are large enough to not have any
intrinsic anisotropy towards a particular direction.

Thickness estimation

For the estimation of section thickness using the regressor fx learned using GP has to
be learned along the direction of least stretching. To select the fx where the X axis is
aligned with the least stretched direction, γyx has to be calculated for different rotations
of the X and Y axis for the same image stack.

We prepared a dataset of 20 consecutive ssSEM sections of size 10 µm× 10 µm from
songbird brain tissue (HVC) to validate our thickness estimation method. EM images
were obtained at a spatial resolution of 5 nm × 5 nm. The thickness of each section
was measured using AFM as described earlier in Section 2.9. Three different image
stacks of size 1300× 1300 were prepared from the first image stack. The average thick-
ness measured using AFM was 74.35 ± 2.64 nm. Our method was able to estimate the
thickness of the 20 sections with a mean absolute error of 9.91% ± 1.97 whereas the
XY-averaging method suggested in [74] estimated the same stack with a mean absolute
error of 18.26%± 1.04. The full comparison of estimation errors is plotted in Figure 2.9
and Figure 2.12.

In addition to thickness measurements of ssSEM sections using AFM, we propose a
second approach for validating thickness estimates using synthetic sections with known
thickness derived from nearly isotropic FIBSEM volumes with known XY resolution.
We use the method described in Section 2.6 to generate data points for learning func-
tion (2.2). For validation of estimated section thickness we split each image stack into
separate training and test data sets. The training sets were used to learn the regression
function given by Equation (2.2) as described in Section 2.7 and the test images were
used for validation. We trained a regression function on 100 images of size 1400 × 900
pixels from a FIBSEM image stack, Figure 2.4. We used the test images to create 3
separate image sequences of 30 images each with known displacements of 10 nm, 50 nm
and 75 nm along the relatively uncompressed axis. The results obtained are summarized
in Table 2.1 along with a comparison with [74].

Although included for comparison, we note that in [74] an average distance-dissimilarity
curve is generated for each pair of images between which the distance has to be estimated
and therefore the interpolation function is based on the statistics of the validation data
itself, unlike in our approach. Since in [31] only relative coordinates for each section
were calculated we were not able to compare our numbers with this latter work.

The estimates of anisotropy and thickness from our method is sensitive to the image
content and registration problems. When images happen to contain anisotropic patterns
such as elongated mitochondria aligned in one direction more than others, it increases the
stretching coefficient along that direction which causes the regressor fx learned along the
least stretched direction to be slightly inaccurate. This particularly takes place when the
image size is not large enough to contain a large number of variably oriented structures so
that there is no preferred orientation on average. When the regressor fx is being used to
estimate section thickness, any registration problems between a pair of adjacent sections
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Table 2.1: Average thickness estimates for sets of 30 sections with the “ground truth” thickness
generated as described in Section 2.6.

Thickness values are in nanometers (nm)

“Ground Truth” 10 50 75
xy avg. [74] 9.93 47.35 69.09
Ours 10.18± 5.61 47.02± 5.60 71.36± 5.59

Table 2.2: Estimated stretching coefficient γyx using synthetic images (Figure 2.6), 500 FIBSEM
images and 20 ssSEM images.

γ for synthetic images (Figure 2.6) γ for real images
Ground-Truth 0.75 0.50 FIBSEM 0.94± 6.6× 10−4

Estimates 0.73 0.63 ssSEM 0.86± 0.01

leads to an additional distance between them. Therefore it has to be made sure that the
stack of images are properly registered before being used for thickness estimation. We
observe that the registration error tends to increase with image size. Therefore it limits
the maximum size of the images to be used for estimating thickness. We observe that
images with 3000× 3000 pixels where the pixel size is 5 nm× 5 nm are large enough not
to have a preferred orientation of structures on average, as well as small enough not to
have a significant registration error.
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Figure 2.9: Validation of thickness estimates: Comparisons of thickness estimates using our
method (GP), XY averaging method suggested by Sporring et. al. [74] and direct measurements
of section thickness by atomic force microscopy. 20 serial sections sliced by an ultra-microtome
and prepared for ssSEM was used. From those 20 serial sections, the AFM measurements were
taken at the edge of each section as described in Section 2.9. Three different ssSEM stacks were
obtained at different locations of the same 20 sections. Each of the above graphs correspond to
one of those stacks.
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(a)

(b)

Figure 2.10: Images corresponding to the peak (sectionID = 14) of the graph shown in
Fig. 2.10b. This value is calculated based on the similarity between image (a) and image (b). Ar-
tifacts seen as white lines in image (b) (highlighted using red ellipses) have possibly contributed
to increase the dissimilarity between the two images, thereby resulting in an overestimate of the
thickness.
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(a) (b)

Figure 2.11: γyx estimated for two image stacks separately for different rotations about the Z
axis. The lowest γyx (pointed out by arrow) corresponds to the stretching coefficient when the
maximum linear compression is along Y axis. At this point, the direction along which the linear
compression is minimal aligns with the X axis.
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Figure 2.12: Absolute estimation errors using our method and [74] with respect to AFM mea-
surements of section thickness for the three image stacks for which the estimates are plotted in
Figure 2.9. Mean absolute error estimates for the three volumes using our method: 9.91%±1.97,
15.81%± 3.64 and 12.25%± 1.96; using Sporring et. al. [74]: 18.26%± 1.04, 18.87%± 2.75 and
14.11%± 1.81.



Chapter 2. Thickness and anisotropy estimation of EM sections 30

2.11 Conclusion

We have presented a method to estimate both thickness and stretching in EM imagery,
using image statistics alone. Our method is based on learning the distance between
sections as a function of their dissimilarity. The stretching coefficient quantifies the
cumulative effect of different sources of anisotropy along the xy plane including handling,
storing, cutting, imaging or simply intrinsic anisotropy of specimen. Estimation of xy
anisotropy is particularly useful to improve the accuracy of the thickness estimation
due to its dependency on the pixel intensity variation along the xy plane. Moreover, it
is suitable as a pre-processing step for any method that assume isotropy in the image
statistics. As part of this work we have created a dataset of 20 ssSEM images along with
thickness measurements directly obtained by AFM. We use this dataset to compare the
performance of our thickness estimation method with other methods that use image
statistics for indirect estimation of section thickness.

Thickness estimation methods based on image statistics alone are prone to inaccurate
estimation of section thickness if sample anisotropy is not taken into account. Our
anisotropy estimation method can be used to select the optimal rotation of the original
image stack to train a regressor that is minimally affected by sample anisotropy so that
it can be used to predict thickness. However this gives best results when sample inherent
anisotropy is minimal. To circumvent this problem we suggest to use large enough images
so that effects of any directed structured that might occur locally may even out given a
larger scope.



Chapter 3

2D neuron slice segmentation
using topological constraints

3.1 Introduction

The most common problems in automatic neuron segmentation are caused by local am-
biguities at neuron membranes when the algorithms erroneously merge two adjacent
neurons into one. Such ambiguities are a result of low SNR in some parts of the image
either because of imperfections in the image acquisition process or lack of sharpness
of neuron membranes. Human annotators are much better at resolving such problems
due to their ability of considering a larger context when dealing with local ambiguities.
Therefore, one way for automatic segmentation methods to reach human level segmenta-
tion accuracy would be to take into account a larger context considering shape cues and
continuation of structures in the presence of gaps. We present a method to automati-
cally annotate neuron slices (2D) on individual EM sections by accurately segmenting
the neuron boundary that surrounds each neuron slice.

Generic classifiers can be used to classify pixels of EM images into classes such as
neuron membrane, synapses and mitochondria. Pixelwise probability maps (Fig. 3.1b)
thus obtained are commonly used as the main input in many neuron segmentation ap-
proaches [5, 22, 23, 46, 47, 58, 83].There has been a significant improvement in pixel
level image classification due to the recent progress in the area of deep neural networks,
in particular with convolutional neural networks (CNN) [13, 81]. The main drawback of
CNNs is that they require a large training dataset which requires a significant amount
of effort. When using CNNs, slight variations in the imaging parameters in datasets re-
quires the CNNs to be trained separately for each dataset. Compared to CNNs, random
forest classifiers (RFCs) require much less training data. However the quality of the
probability maps generated by RFCs is usually less than those from CNNs. Our method
produces significantly more accurate neuron segmentations using noisy probability maps
from RFCs, compared to segmenting the same probability maps using standard tech-
niques like the graph cut [7], thereby providing a way of generating reasonably accurate
segmentations using a small amount of training labels.

The automatic segmentation method we propose uses topological constraints that
reflect expected properties of an accurate segmentation of 2D neuron slices on an EM

31
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(a) (b)

Figure 3.1: (a) ssTEM image of a section of the ventral nerve chord of drosophila larva. (b)
Corresponding membrane probability map generated using a random forest classifier. Low pixel
intensity (dark) corresponds to high membrane probability.

section. These constraints are defined on edges, nodes and faces of a planar graph which
is derived from a membrane probability map. The segmentation problem is formulated
as an integer linear program (ILP) that assigns an active or inactive state to each of the
binary state variables (edges, nodes and faces of the graph) under these constraints. In
addition to the constraints, we define an objective function that uses prior information
about the state of these variables which is obtained by means of state of the art clas-
sifiers. Sec. 3.3 describes how we derive a graph of over-segmented object boundaries
from a membrane probability map. Sec. 3.4 to Sec. 3.7 presents the formulation of our
segmentation method as an ILP. Sec. 3.8 provides an evaluation of our approach with
comparisons to other methods.

3.2 Related work

With the increase of automated and efficient EM image acquisition methods, there has
been many advances in automated 3D neural circuit reconstruction methods in recent
years [23, 83, 47]. Most of these methods commonly use pixelwise neuron membrane
probabilities estimated using state of the art classifiers.

The method presented in this paper focuses on segmenting neurons on 2D images
which is potentially useful in 3D reconstruction pipelines where the accuracy of 3D
reconstructions depend on the quality of 2D candidate segmentations [23, 24]. Other
methods that can be used to generate 2D segments include the graph cut and region
merging approaches [58, 40, 5]. Among the region merging approaches [58, 5] work in
both 2D and 3D.

Our approach differs from the above methods because we use local constraints that
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focus on lowering topological errors which are usually caused by lower SNR, thereby
addressing problems that are typically difficult for automatic methods.

3.3 Graphical representation of the segmentation problem

Our method essentially represents the neuron segmentation task as an edge labeling
problem on a planar graph (Fig. 3.2), where the edges of the graph correspond to po-
tential object boundaries which delineate cell interior and membrane segments. The
edge labeling procedure results in assigning a state to each of those edges. The assigned
state would either be active or inactive, such that each active edge will be considered
a true object boundary i.e. the two faces of the graph on either side of that edge will
be assigned to opposite classes one of which is foreground (cell interior) and the other
background (membrane).

Following sub-sections describe how we represent a membrane probability map of
an EM image as a planar graph (Fig. 3.3a) which is then used to formulate an ILP.
The optimal solution of the ILP states which edges (and regions) are active as shown in
Fig. 3.3b.

3.3.1 Probability maps

As the first step, we obtain a membrane probability map (Fig. 3.1b) of neuron membranes
corresponding to the input EM image (Fig. 3.1a). Each pixel of such a probability map
gives the probability of that pixel belonging to the class of neuron membrane. These
probability maps can be generated using any generic classifier of choice (e.g. CNN, RFC).

3.3.2 Graph of over-segmented object boundaries

In the second step potential object boundaries are extracted from probability maps.
We use a bank of oriented edge detection filters (Fig. 3.2a) to detect possible object
boundaries along with their orientation. The output of such a filter bank applied to
a membrane probability map quantifies how likely it is for an edge to be present at
each pixel for each of the orientations defined in the edge filter bank. The filters have
orientations ranging from 0° to 350° in steps of 10°. The maximal response from these
filters at each pixel is illustrated in Fig. 3.2b.

A watershed transform is applied on the filter output to obtain a height map of the
local maxima of the max response of the filter. Here the watershed transform imple-
mented in MATLAB 2016b as formulated in [55] was used. This implementation results
in locally connected components (or superpixels) of similar pixel intensities, as quantified
by local intensity gradients. Each superpixel is assigned a unique identifier. A bound-
ary having a width of one pixel is placed between any two superpixels with different
identifiers. These boundaries are referred to as ‘ridges’.

The ridges of the watershed transform corresponds to a graph of containing all pos-
sible edges detected by the oriented filter bank (Fig. 3.2c). Therefore, this graph can
be considered as an over-segmentation of object boundaries that we would proceed to
segment. To avoid having too many small watershed super-pixels (a.k.a. fragments), the
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Figure 3.2: (a) Edge filter used for oriented edge filtering. 36 rotations (10° each) of this
structure are convolved with the membrane probability maps to get the oriented edge filter
response. Cell interior (foreground) is always on the right hand side of the directed edge. (b)
Max response of oriented edge filtering of Fig. 3.1b. The intensity of each pixel is the max of
the convolutions of all oriented edge filters. The hue h ∈ [0, 1] of each pixel corresponds to the
orientation θ ∈ [0, 360°] of the edge with the highest response. (c) Watershed transform of the
max response of oriented edge filtering.

filter response is smoothened using a Gaussian filter with σ = 1.4 pixels, before applying
the watershed transform.
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3.4 Problem representation using binary state variables
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Figure 3.3: Illustration of the graph on which our optimization problem is defined: (a) Zoomed
in version of Fig. 3.2c showing the extracted planar graph representing possible object boundaries
(red) that delineate cell interior and neuron membranes. This graph is overlaid on the EM image
from which the edges are derived. (b) Expected outcome of our segmentation task. Each region
which is part of cell interior is assigned 1 and membrane is assigned 0. Each active (directed)
edge separating cell interior and membrane is highlighted in yellow. All inactive edges remain
red. (c) Binary state variable types used in Sec. 3.4: edges (e), nodes (n) and regions (r) to
define an integer linear program are annotated on a zoomed in version of (a). Note that each
object boundary in Fig. (a) (shown in red) between any two nodes ni and nj is denoted by a
pair of edges having opposite directions (green). (d) Sketch of the same graph shown in (c).
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Using the graphical representation in Fig. 3.3a we formulate an optimization task
that results in the desired labeling of edges and regions where the regions which are part
of cell interior are assigned to foreground and the regions which are part of membrane
are assigned to background as illustrated in Fig. 3.3b. This section describes how we
formulate an ILP using the graph of over-segmented object boundaries such that the
optimal solution corresponds to an accurate segmentation of neuron boundaries.

We define three types of binary state variables corresponding to the edges, nodes and
faces of that graph as shown in Fig. 3.3d. The active state of a binary state variable
means that it has the value one.

1. Edge state binary variables Each edge shown in the graph (Fig. 3.3a) between
two nodes ni and nj colored in red has three corresponding state variables: (a)
eij = 1: directed edge exists from node ni to nj , (b) eji = 1: directed edge exists
in the opposite direction, (c) e0

ij = 1 ⇐⇒ e0
ji = 1: lack of an edge between nodes

ni and nj . If the edge between the nodes id j is part of the object boundary, either
eij or eji is set to be active by the ILP (Fig. 3.3b).

2. Region state binary variables Each face (region) m of the graph has two cor-
responding state variables rm and r0

m. rm = 1 when region m is part of foreground
in the segmentation output. r0

m is active when region m is part of background.

3. Node state binary variables In an accurate segmentation output, the angles
between two edges (neuron boundaries) tend to be smooth. Therefore, sharp angles
occurring between two active edges are penalized in the ILP objective. Assigning
such a penalty to the activation of a pair of edges gives rise to a quadratic program.
In order to keep the problem formulation linear we define node state variables which
correspond to pairs of directed edges. At any node of the graph (Fig. 3.3a) there
are at least 3 edges (6 directed edges as in Fig. 3.3d) out of which exactly two or
zero has to be active as described later in Sec. 3.6. A set of node state variables
nci are defined for each node. When a particular node state nci is active, it specifies
which pair of directed edges are active out of all edges connected to this node.

nc=0
i is the state where the node is not active i.e. not part of the segmentation and

therefore none of the edges connected to it are active. Fig. 3.4 illustrates the set
of node state variables for a typical node of the graph with 3 neighbors.

3.5 Integer Linear Program

Linear Programming (LP) is a technique for optimizing a set of state variables that can
take a continuous set of values within the given constraints for the problem by optimizing
an objective function which is a linear combination of the state variables. Integer Linear
Programming is a special case of Linear Programming where the state variables can only
take integer values.

The cannonical form of an ILP is as follows.

max
x

cTx, (3.1)
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subject to:
Ax < b, (3.2)

and
x ∈ Z. (3.3)

Here c is the known coefficient vector for the state variables x in the objective function.
A is the known coefficient matrix of the constraints and b is a set of known constants.
Depending on the structure of the problem, ILPs with up to hundreds of thousands
of state variables can be efficiently solved with current state of the art optimization
tools [29]. The structure of the problem relates to the set of constraints and the objective
function of the optimization task. In our case optimal solutions can be found in the
matter of seconds suggesting that the problem structure has a favorable form for the
solution to be found efficiently.

3.6 ILP constraints

The constraints of an ILP are a set of bounds for different linear combinations of the
state variables that define the solution space of the entire set of state variables. We
define a set of hard constraints that reflect general properties expected in an accurate
segmentation output. Following is a description of these linear constraints used in our
ILP.

3.6.1 Low-level constraints

We define an activation constraint for each variable type as follows.

1. Directed edge activation Between two adjacent nodes ni and nj , we allow either
the outgoing edge eij (w.r.t ni) to be active or the incoming edge eji to be active
or none of them to be active (e0

ij = 1 ⇐⇒ e0
ji = 1). Therefore, each edge of

the graph in Fig. 3.3a has three corresponding binary edge states, out of which
exactly one has to be set to 1. The mathematical formulation of this constraint is
as follows:

∀eij ∈ E , eij + eji + e0
ij = 1, (3.4)

where E is the set of all edges in the graph.

2. Node activation Similarly, for each node ni we enforce that one of all possible
nodes states (c ∈ {0, 1, ..., p}) must be active.

∀ni ∈ N ,
p∑

c=0

nci = 1, (3.5)

where N is the set of all nodes and p is the number of binary node states of node
ni as illustrated in Fig. 3.4.

3. Region activation Each face of the graph (region) is assigned two binary in-
dicator variables: r1

m and r0
m. When region m is assigned to foreground, the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Node states: (a) depicts a typical node (in red) in a graph similar to Fig. 3.3d that
is connected to each of its three neighboring nodes (blue) via a pair of directed edges. Fig.(b)
to (h) are all possible p node states for the node in red. Each of these states are represented
by a binary variable in the ILP formulation. (b) shows the inactive node state where it is not
connected to any of its neighbors. (c) to (h) show all possible active states this node is allowed
to have according to the given constraints. In each of these active node states there are exactly
two active edges attached to it, where one is incoming and the other out going. Therefore,
p = 2 ·

(
L
2

)
+ 1 (where L is the number of directly connected nodes to the current node).

corresponding region binary state variables should have the values: r1
m = 1 and

r0
m = 0. Therefore, region state variables are activated according to the following

constraint:
∀m ∈ R, r1

m + r0
m = 1, (3.6)

where R is the set of all regions.

3.6.2 Topological constraints

Co-activation of different combinations of state variables results in different topologies
in the output segmentation. If not properly constrained, the resulting topology could
deviate from what’s expected in an accurate segmentation. Therefore, we define the
following constraints in order to ensure that resulting segmentation have an acceptable
topology.

1. Closed loop of edges In the segmentation output each foreground segment
must be enclosed by a closed loop of edges. This also means there must not be
any dangling edges activated, that do not have exactly two other edges connected
to either end of it (Fig. 3.5a). We enforce this topological property as a constraint
as follows:

� When a node is active exactly two edges connected to it have to be active as
well.

� When the node ni is inactive (n0
i = 1), none of the edges attached to it can

be active.
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A

B

(a) (b)

Figure 3.5: (a) A dangling edge would mean that the regions A and B on either side of the
edge are of the same type. This is a topological error because an edge has to have two opposite
types of regions on its sides (foreground and background). We prevent this using the constraint
closed loop of edges (Eq. 3.7). (b) Because of our definition of a directed edge, any foreground
segment has to be bounded by a closed clockwise loop of active edges. We enforce this topological
property using constraint clockwise edge loop around foreground (Eq. 3.9).

This results in the following mathematical formulation:

∀ni ∈ N , 2n0
i +

∑
eij∈Eni

eij = 2, (3.7)

where Eni is the set of edges attached to node ni. Any neighbor of ni connected
via the edges eij and eji is denoted by nj .

2. Activate corresponding edges of a node state For each active state of node
ni, there is a unique pair of directed edges that have to be activated. While
constraint (3.7) ensures there are exactly two active edges for an active node, this
constraint (Eq. (3.8)) ensures the matching between the predefined node states
and the corresponding active edge pairs. This matching is important because in
the objective function (Sec. 3.7) we use a precalculated set of costs for each node
state based on the angle between its active pair of edges.

Consider a typical node ni with (at least) a pair of neighboring nodes nj and
nk. Let node state nci have the edges eij (outgoing edge) and eki (incoming edge)
activated.

We formalize this constraint as follows:

∀ni ∈ N ,∀c ∈ Cni , 0 ≤ −2nci + eij + eki ≤ 1, (3.8)

where N is the set of all nodes and Cni is the set of all node states of node ni.

3. Clockwise edge loop around foreground As mentioned previously, topological
constraint (i) given by Eq. (3.7) enforces a closed cycle of edges around every fore-
ground segment. However according to the definition of a directed edge (Fig. 3.2a)
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Figure 3.6: (a) Sketch of two nodes i and j with two directed edges eij and eji between them.
Region to the left of eij is ri where as the region to its right is rj . (b) Clockwise edge loop
constraint given in Eq. (3.7) enforces both ri and rj to be of the same state if the edge in
between the regions is inactive. (c) and (d) If one of the directed edges is active, the same
constraint enforces that the region on the left of the directed edge is of type membrane.

foreground must occur to the right of an active edge. Therefore, these closed cycle
of edges should have a clockwise sense (Fig. 3.5b).

This topological constraint is formulated in the ILP as follows:

∀eij ∈ E , −eij + eji + r1
j − r1

i = 0. (3.9)

4. Membranes as closed loops We do not expect to see gaps in the segmented
neuron membranes. In other words, as shown in Fig. 3.3b, the segments which
are assigned to be membrane (background) are contiguous. Any region which is
assigned to background must have at least two other adjacent regions connected to
it that are also assigned to background. This property is formalized as a constraint
using the following equation:

∀ri ∈ R, r1
i − r0

i +
∑

ej∈Eri

e0
j ≥ 1. (3.10)

Here, ej is an element of the set Eri of all edges bounding region ri and e0
j = 1

when edge ej is not active. In Eq. (3.10) making sure that at least 2 of the edges
are inactive when the region is turned off (i.e. assigned to background), we enforce
that region to be part of a contiguous membrane segment.

We observe that this constraint helps the system to fill gaps observed in membrane
probability maps (Fig. 3.1a). This is useful since neuron membranes sometimes
gets blurred out and leads to merging of two adjacent neuron sections via this
blurry region due to that region being misclassified as being part of cell interior.

3.7 ILP objective function

The purpose of the objective function of our ILP is to minimize the deviation of the op-
timal solution from prior information derived from the data. We precompute coefficients
for each binary state variable using the input data, using classifiers that are trained on
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Figure 3.7: Illustration of node angle βaib used in Equation 3.14. θ values are obtained from
oriented edge filters as described in Sec. 3.3.2. The horizontal dotted line is the reference with
respect to which the angles are defined for the oriented edge filters.

available ground truth. The objective function of the ILP is:

{e∗, n∗, r∗} = argmin
e⊂E,n⊂N ,r⊂R

Ce + Cn + Cr. (3.11)

Here, the terms Ce, Cn and Cr represent the weighted cost terms for the activation of
the state variables corresponding to edges, nodes and regions in the model respectively.
The objective term Ce for edge state variables is defined as:

Ce =
∑
ei∈E

won
e · ueij (eij + eji) + woff

e · (1− ueij ) · e0
ij , (3.12)

where weon and weoff are the linear weights controlling the relative reward (or pe-
nalization) of turning an edge on (or off). ueij is the a priori probability for edge eij
to be active i.e. be part of an object boundary. This probability can be learned using
any general classifier of choice. Fig. 3.8a illustrates a priori edge activation probabilities
obtained using a random forest classifier.

The cost term Cn corresponding to all node state variables ni ∈ N is:

Cn =
∑
ni∈N

{woff
n · un0

i
· n0

i + won
n

∑
c∈Ci

unci · n
c
i}, (3.13)

where Ci is the set of all node states of node ni.

In Eq. (3.13) we have set the score un0
i

for any inactive node configuration to be equal

to 1 so that in the ILP objective its contribution is solely determined by the weight woff
n .

The score unci assigned to each active node configuration c of node ni is calculated as

unci = f(βaib) =
1

σ
√

2π
e−

(β−π)2

2σ2 (3.14)

where βaib is the angle between the two active edges corresponding to the active node
configuration j of node ni (Fig. 3.7). This score is a smoothness term which is maximal
for a node configuration where the incoming and outgoing edges are at an angle 180° and
drops to zero when it deviates from 180°. The variation of the smoothness is modeled
using a Gaussian function with mean 180° and a predefined spread σ (≈ 45°) as given in
equation 3.14.

The objective term for all regions Cr is:
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(a) (b)

Figure 3.8: Visualization of a priori probabilities associated with edge state variables and region
state variables of an EM image, which are used in the ILP objective (Equation. 3.11). (a) Each
pixel belonging to an edge indicates the a priori probability of that edge being at the boundary
between neuron membrane and cell interior. These probabilities are generated using a random
forest classifier. White indicates a high probability. (b) Each region is assigned an a priori
probability that it belongs to cell interior. This probability is obtained from the membrane
probability map by averaging the pixelwise probabilities over each region.

Cr =
∑
ri∈R

won
ri · uri · ri +

∑
r0i ∈R

woff
ri · ur0i · r

0
i (3.15)

where uri is the a priori probability of the region being part of cell interior. This value
is obtained by averaging the membrane probability of all the pixels in a given region
(Fig. 3.8b).

3.7.1 Structured learning of cost function parameters

The linear cost function (Equation 3.11) used in the ILP has six linear weights won
e ,woff

e ,

won
n , woff

n , won
r and woff

r as described in expansions of the cost terms in equations 3.12,
3.13 and 3.15. We learn optimal values for these weights using structured learning.

The optimal value of the ILP given by Equation 3.11 can be seen as the state y∗

that corresponds to the minimal energy of E(x,y; w) where x is the observations vector.
Here, y is a vector containing all the state variables (edges, nodes and regions) based
on which the optimization task is formulated as described earlier. The weight vector w
is used to linearly weight the real valued features φ(x,y) (Equation 3.17). In our case
these real valued features correspond to the terms in the objective function that are to
be linearly weighted.
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f(x) = argmin
y∈Y

E(x,y; w) (3.16)

E(x,y; w) = 〈w, φ(x,y)〉 (3.17)

Under the structured learning frame work we find the optimal set of weights w∗ that
minimises the empirical risk J(w,x′,y′) for a given training data set with labels y′ ∈ Y
and observations x′ ∈ X .

w∗ = argmin
w

J(w,x′,y′) (3.18)

J(w,x′,y′) = Ω(w) + L(w,x′,y′) (3.19)

L(w,x′,y′) is the loss function defined on the training data set which relates to hinge
loss in maximum margin training. Ω(w) is a convex regularization term defined on the
weight vector w.

L(w,x′,y′) = max y ∈ Yτ(y′,y)δE(y′,y) + ∆(y′,y) (3.20)

where ∆(y′,y) is an application specific cost, for which we used Hamming distance
between y′ and y and δE(y′,y) is defined as follows:

δE(y′,y) = E(x′,y′)− E(x′,y) (3.21)

For learning the weight vector w we used an implementation of structured risk min-
imization publicly available.1

3.8 Results

Evaluation criteria

The quality of neuron segmentation methods is usually calculated by comparing the seg-
mentation results of those methods against a groundtruth labeling of neurons. We used
Rand Index (RI) [63], Variation of Information (VoI) [54] and Tolerant Edit Distance
(TED) [25] to evaluate our approach. It has to be noted that in the case of neuron
segmentation, small shifts of the boundary of neurons can be ignored as long as such a
shift will not result in a merge or split error. Both RI and VoI are known to be affected
by boundary shifts of the segmentations [39, 25]. Therefore TED is more suitable for
evaluating segmentation results in terms of their topological accuracy.

Topological error quantification using TED

TED quantifies topological errors of a given neuron segmentation against a given ground
truth labeling of neurons. The topological errors evaluated are: false splits (one neuron
segment assigned with two neuron labels), false merges (two different neurons assigned
with the same neuron label), false positives (foreground segment identified where there
should be just background), false negatives (background segment identified where there
should be foreground).

1https://github.com/funkey/sbmrm
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Figure 3.9: ssTEM image corresponding to the results shown in Figure 3.10. Image taken from
ISBI 2012 [9] dataset.

Given two labelings y and g where g can be the ground truth segmentation, TED
quantifies the topological error as the minimum number of possible false splits, false
merges, false positives and false negatives while allowing the boundaries of the input
segmentation y to shift by a small predefined threshold θ which is referred to as the
tolerance. This tolerance criterion is used to produce different relabelings of y which are
different versions of y that have boundary shifts smaller than the predefined tolerance.

The general formulation of TED between the labelings g and y is therefore:

TED(g, y) = min
y′∈Y (y)

splits(g, y′) +merges(g, y′), (3.22)

where Y (y) is the set of all relabelings of y within the allowed tolerance. These relabelings
are found by obtaining superpixels (or supervoxels in 3D) whose labels can be changed.
Such superpixels can be identified by intersecting the groundtruth labeling g and the
segmentation output to be evaluated y. To find the minumum topological error over all
possible tolerant relabelings, an integer liner program is used to solve Equation 3.22 as
detailed in [25].

Experiments

We evaluate our method using a publicly available dataset[9] of neural tissue of Drosophila
larva, along with manually annotated neuron membrane labels. This dataset contains
30 sections of serial section Transmission Electron Microscopy (ssTEM) images of size
512×512 pixels. Each pixel is of dimensions 4 nm×4 nm. Each section is approximately
50 nm thick. We set aside images 21 to 30 for evaluations.
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(a) (b)

(c) (d)

Figure 3.10: Segmentation outputs produced by our method using RFC probability map and
CNN probability map for a single test EM image of size 512 × 512 pixels for the raw EM
image shown in Figure 3.9. (a) Probability map obtained using RFC for a test EM image. (b)
Segmentation output using our method for RFC probability map. (c) Probability map obtained
using a CNN. (d) Segmentation output using our method for CNN probability map.
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(a) (b)

(c) (d)

Figure 3.11: Comparison of topological errors in segmentation outputs produced by our method
vs GALA [58] (region merging). (a) Raw EM image from ISBI 2012 [1] public dataset. (b)
Membrane probability map produced by CNN. (c) Segmentation output produced by GALA for
the same image. Foreground (cell interior) is shown in white where as background (membrane) is
shown in black. Merge errors are shown in red. Missed segments (also known as false negatives)
are pointed out in yellow. (d) Segmentation output using our method. Errors are highlighted
with the same color code.
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CNN:STC

RFC:STC

Figure 3.12: Total topological error quantified using TED plotted against the boundary tol-
erance allowed in pixels. which is the sum of false positives, false negatives, false splits and
false merges. normalized by the number of segments in ground truth. Segmentation using our
approach with CNN probability maps as inputs (CNN:STC) shows the best accuracy.

Probability maps

Using random forest classifiers

We used the random forest classifier provided by Ilastik segmentation toolkit [73]. The
classifier was trained interactively by placing a few brush strokes to mark neuron mem-
brane and cell interior separately on the first three images of the dataset. The reason to
use such a small dataset for training is partly because the training accuracy doesn’t sig-
nificantly increase by adding more training labels for this classification task using RFCs.
Furthermore, it is to point out that when there is not much training data available,
RFCs are a good choice for pixel classification that still produces good results with our
constraint-based segmentation method. Training of the RFC took less than five minutes.
After training, processing each image to predict membrane probabilities took around 10
seconds.

Using convolutional neural networks

Another set of probability maps were generated using the CNN implementation pro-
vided by [81], using the first 20 images of the same dataset for training. This CNN
implementation based on the Caffe CNN library [43] is an efficient implementation of
Strided Kernel network architecture (SK-net) first suggested in [51]. The efficiency gain
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Figure 3.13: Comparison of segmentation errors using Variation of Information (VoI) and Rand
Error (RE = 1 − RI). Methods compared: Graphcut (GC) [7], Graph-based active learning of
agglomeration (GALA) [58] and our method (STC). (a) Using RFC probability maps as inputs.
(b) Using CNN probability maps as inputs.

in SK-net as opposed to commonly used sliding window (SW) architecture comes from
the fact that SK-net allows to predict serveral pixel labels at once instead of one pixel
at a time. This is achieved by considering the overlapping context for each pixel that
can be used to reduce redundant computations. Furthermore, the implementation by
[81] takes advantage of parallelization provided by modern graphical processing units
(GPU).

SK-net architecture has 9 hidden layers altogether. Three of the layers are convo-
lutional layers combined with ReLU (rectified linear units). The other layers are three
maxpooling layers and three inner product layers. Training of 20 images of size 512x512
used for comparisons took around 12 hours. Prediction using the trained network took
less than one second per image of the same size.

Comparisons

We compare the performance of our method with the graphcut (GC) [7] and Graph-
based active learning of agglomeration (GALA) [58] using probability maps generated
as mentioned above. We have a lower VoI than both GC and GALA. Furthermore, our
approach results in a lower cumulative topological error than GC and GALA (Fig. 3.12).
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Figure 3.14: Breakdown of topological segmentation errors quantified using Tolerant Edit Dis-
tance (TED) [25] comparing Graphcut (GC) [7], Graph-based active learning of agglomeration
(GALA) [58] and our method (STC). (a) False merges and false splits using RFC inputs. (b)
False merges and false splits using CNN inputs.

3.9 Conclusion

We have proposed a method to segment neuron membranes in EM images which results
in fewer topological errors. Our method takes pixelwise membrane probability maps
as inputs which are then used to represent the segmentation task as an edge labeling
problem on a graph. The edge labeling is solved by formulating an ILP using topological
constraints to improve segmentation accuracy.

We have shown that our method can be used to produce 2D neuron segmentations
using probability maps from both CNNs and RFCs with less topological errors than other
segmentation methods. State of the art classifiers based on deep learning such as CNNs
that produce high quality probability maps for EM datasets need a lot of training labels
for each dataset, which is a major bottleneck for automated segmentation methods.
On the other hand, random forest classifiers require much less training data with the
drawback of resulting in probability maps of lower quality.

Because of the generic nature of the topological constraints used in our approach, we
note that this method can be potentially used in any image segmentation pipeline that
have similar properties.
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Part II

Investigation of effects due to
sensory exposure on zebra finch

HVC using EM images
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Chapter 4

Introduction to vocal learning in
zebra finch

The ability to learn allows an organism or an artificial system to acquire new behaviours
and adapt to its environment. It can be viewed as a means of expanding beyond what’s
biologically innate to an organism. The brain’s capacity to learn is a highly interesting
area in neuroscience research. Such research in neural basis of learning include studies of
learning speech and other vocalizations. Apart from humans, no other primate species
is known for learning complex vocalizations. Whales, dolphins and some types of bats
are the rest of the species of mammals that exhibit vocal learning. However there are
many species of songbirds that show this behaviour that provides a model to study the
learning of vocalizations.

It has to be noted that speech learning and song learning have many differences.
However, the common factor between the two is the sensorimotor learning of an elaborate
vocalization. Bird songs are not known to have the property of a spoken language which
is a medium for communicating complex messages. This is one obvious limitation of the
analogy of song learning to human speech learning when songbird models are used as a
potentially analogous system to study speech learning in humans.

This chapter gives an overview of the song system of zebra finch (Taeniopygia guttata)
in order to provide a basis for the analysis carried out in the following chapter where we
look into quantitative changes in a particular type of ultrastructure in a brain region in
the song learning pathway of zebra finch.

4.1 Behavioural basis of song learning

The singing behaviour in zebra finch is only present with the males. The female birds
only vocalize calls which is essentially a short announcement saying ‘I’m hear’. Calling is
common to both male and female zebra finches. The male juvenile birds learn to imitate
a song from an adult male referred to as a tutor. At the earliest stage the song sung by
a juvenile bird is referred to as the subsong. It is commonly likened to the babbling of
human infants. Eventually the song of a juvenile bird develops to closely resemble the
song of its tutor. At this point the juvenile has become sexually mature and its song
has become stable.
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Figure 4.1: Timeline for song learning in zebra finch [8]. The sensory phase lasts from around
15 dph to 60 dph. The overlapping sensorimotor phase spans from around 25 dph to 90 dph.
Approximately after 90 dph the song is crystallized.

There are three overlapping phases of song learning as illustrated in figure 4.1. The
age of the juvenile birds is indicated in the units of days post-hatch (dph) which is
essentially the number of days after hatching out of the egg. In the sensory phase
(15 dph - 60 dph) the juvenile bird forms an internal representation of a tutor song to
which its exposed. During the sensorimotor phase (25 dph - 90 dph), the juvenile starts
to vocalize the song and tries to improve its song to be closer to the tutor song based
on auditory feedback of its own singing. In this phase the juvenile’s song is referred to
as the plastic song. At around 90 dph the juvenile is left with a stable song which is
similar to the tutor song. This is referred to as crystallization of the song.

4.2 Song system

In contrast to mammalian brain which is organized in cortical layers, songbird brain is
organized in clustered neurons referred to as nuclei. A network of sensorimotor nuclei is
collectively responsible for learning, producing and maintaining song. This network is
referred to as the song system. A schematic representation of the connections between
the nuclei of the song system is shown if figure 4.2.

HVC

Unlike the brain of mammals which is organized in cortical layers, the brain of songbirds
is organized in clustered neurons referred to as nuclei. The analysis carried out in
Chapter 5 focuses on structural changes in nuclei HVC, at the level of synapses. This
nucleus is known to be involved in song learning and song production [56]. It is observed
to be essential for the higher-level patterning of the song. Currently HVC is used as the
proper name of this nucleus. Previously it was an acronym referring to a function which
was later found out to be inconsistent with subsequent biological findings. HVC is the
source of auditory input to the anterior forebrain pathway (AFP) and to the nuclei of
descending motor pathway. It has two sets of efferent neurons projecting to RA and
Area X. It has possibly four different sets of afferent neurons projecting from nucleus
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Figure 4.2: Generalized sagittal section of songbird brain highlighting neural pathways of vocal
learning. The color code distinguishes between different pathways: blue - motor pathway, red -
anterior forebrain pathway (AFP), pink - auditory pathway.

interfacialis (NIf), nucleus uvaeformis (Uva), median part of the magnocellular nucleus
of the anterior neostriatum (mMAN) and field L (primary auditory telencephalon).

It has been discovered that neurons projecting from HVC to RA drives the singing
of a crystallized adult song. The motor commands necessary for song production seem
to be mainly present in the network containing HVC and RA. The activity of HVC to
RA projection neurons encodes the temporal structure of the song in a highly sparse
manner with significant stereotipy. In summary, the role of HVC neurons can be seen
as providing sparse and stereotyped code to drive downstream motor commands [30].

Dendritic spine turnover rate in HVC neurons was observed to be affected by tutor
exposure suggesting a direct link between song learning and synaptic changes in HVC
neurons [66]. In the analysis carried out in the next chapter, we focus on the ultrastruc-
tural changes taking place in HVC at synapse level caused by different levels of exposure
to tutoring.
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Chapter 5

Effects of sensory exposure on
MSB formation

5.1 Introduction

Since the early 1950s, electron microscopy (EM) has been a way of getting important
insights of the anatomy and important structural properties of the nervous system.
This was mainly because of the very high resolutions that could be obtained with EM
compared to other microscopy techniques [70, 60]. At such high resolutions we are able
to observe brain ultra-structures such as chemical synapses as shown in figure 5.1. This
chapter elaborates an EM image driven analysis of some of the effects in zebra finch
brain ultrastructure caused by sensorimotor learning.

5.1.1 Background

Synapses are the junctions through which information is passed from one neuron to
another or to other types of cells. The message transmitted originates from the presy-
naptic partner and it is received by the postsynaptic partner. They are of two types:
chemical synapses and electrical synapses. Electrical synapses are also called gap junc-
tions. A gap junction is an electromechanical conductive link of ion channels between
two neighbouring neurons. The more common form of synapses are chemical synapses
which communicate using neurotransmitters packaged into vesicles that reside near the
presynaptic membrane. In this chapter we only consider chemical synapses. Figure 5.1
illustrates how chemical synapses are seen in an EM image. On the presynaptic mem-
brane a thick dark structure which is the presynaptic endocytic zone can also be observed.
postsynaptic membranes have receptors on which the transmitted vesicles can dock and
release neurotransmitters into the postsynaptic partner. These receptors are typically
seen as the dark region on top of the membrane of the post-syanptic side and is referred
to as the postsynaptic density. Synaptic vesicles of the presynaptic partner and the
postsynaptic densities are clearly observable in EM images as shown in Figure 5.1.

Synapses can be broadly categorized into two types: asymmetric synapses (Gray’s
type 1) and symmetric synapses (Gray’s type 2) [28]. In asymmetric synapses, the post-
synaptic density is seen to be thicker than the presynaptic density as shown by EM
images. This characteristic component of an asymmetric synapse is a fuzzy electron
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Figure 5.1: One section out of a FIBSEM image volume obtained from a sample of zebra finch
HVC. This image is of size 5µm × 5µm. Each pixel corresponds to a 5nm × 5nm area in the
sample volume. In this image a multi-synaptic bouton is labelled along with its two synapses
and the corresponding post-synaptic partners.

dense structure placed just beneath the membrane. This structure was found out to
contain a variety of receptors, scaffolding proteins and signaling complexes involved in
synaptic transmission and neuroplasticity [71]. Asymmetric synapses are commonly as-
sociated with excitatory junctions found mainly on dendrites and dendritic spines. EM
image analysis further shows that the presynaptic boutons of asymmetric synapses con-
tain spherical vesicles with a diameter of around 35 nm.

EM images of symmetric synapses which are considered to be inhibitory junctions
show thinner postsynaptic densities than those of asymmetric synapses. Symmetric
synapses are commonly found at the neuronal soma, along dendritic shafts and at the
axon hillock. EM images further reveal that the vesicles in the presynaptic partner of a
symmetric synapse contains vesicles with both spherical and flattened shapes.

When the synaptic junction is between two neurons, the postsynaptic partners are
either dendritic spine heads or spine necks. A dendritic spine is the protrusion from
a dendrite of one neuron towards a synaptic bouton of another neuron that receives
input from that synaptic bouton. In a chemical synapse, dendritic spines express gluta-
mate receptors on their surface for receiving neurotransmitters. A synaptic bouton with
more than one postsynaptic partner is referred to as a multi-synaptic bouton (MSB). A
postsynaptic partner can either be a dendritic shaft or spine.
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Figure 5.2: Simplified 2-dimensional illustration of a multi-synaptic bouton. Axonal bouton
shown here has two postsynaptic partners.

5.1.2 Neuro-anatomical changes and learning

Learning of behaviors including motor skills depends on the brain’s ability to respond to
instructive experience. In 1890s, Ramon y Cajal and Eugenio Tanzi hypothesized for the
first time that changes to the structure of the brain may occur as a consequence of expe-
rience [62, 79]. This important and fascinating capability of the brain which is believed
to be based on changes in neural circuitry, is commonly referred to as ‘plasticity’. Such
changes usually involve the generation of new synaptic connections and modification of
existing connections between dendrites and axons of different neurons. Recent studies
have been able to confirm that dendritic spines are highly plastic structures that are
observed to be a significant facilitator of learning and memory [34, 3, 69, 89].

Furthermore, synaptic strengthening which is thought to play an important role in
learning has been observed to correlate with an increase in stability and the number and
size of dendritic spines [4, 12, 14, 16, 52, 53, 88, 90]. In other experiments investigating
effects of Long-term Potentiation (LTP) which is a form of synaptic plasticity, outgrowth
of new spines or filopodia has been a consistent result of LTP-inducing stimulation [16,
52, 45].

5.1.3 Experience-dependent learning and MSBs

Proportion of MSBs compared to total number of axonal boutons has been quantified
in different brain areas in rat and mice in previous studies. In the barrel cortex of adult
mice over 1 month and it was found that the number of synapses on boutons varied
from one to three. Only a small fraction of boutons were observed to be multi-synaptic
(14%) [48]. It was also observed that the MSBs were generally larger than the single-
synapse boutons (SSBs). Several studies have been carried out suggesting a relationship
between experience dependent learning and the formation of multi-synaptic boutons.
In cat visual cortex, 60% of the axonal boutons are found to be MSBs that have two
postsynaptic partners that are usually dendritic spines [21]. In hippocampal area CA1
of rat, the following observations have been made regarding the proportions of different
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types of connectivity of vesicle containing axonal boutons to dendritic spines [33]:

� 75% of the boutons connect to one dendritic spine (SSB)

� 21% of the boutons connect to more than one dendritic spine (MSB)

� 4% of the boutons didn’t have any postsynaptic partner

It has also been observed that presynaptic axonal boutons vary in structure from one
brain region to the other.

Different aspects of MSBs relating them to learning and memory has been experimen-
tally investigated in several studies especially since the early 1990s. In 1991, Friedlander
et. al. [21] observed that MSBs in cat visual cortex are influenced by visual experience
during development. K. M. Harris (1995) [32] proposed a model for the spread of LTP
between potentiated and presynaptic partners which are MSBs.

Jones et. al. [44] investigated the changes of the proportion of MSBs in the layer IV of
the visual cortex in adult rats in a controlled experiment designed to expose the animals
to different levels of stimulation. One group of rats were kept in an individually caged
standard laboratory environment for 60 days. Another group of rats were kept together
for 60 days in an enriched environment with toys that were changed daily. The number
of MSBs normalized for the number of neurons (using unbiased counting) were found to
be significantly higher in the layer IV of the rats kept in the enriched environment.

Toni et. al. (1999) [80] carried out an analysis by inducing LTP in rat hippocampal
organotypic cultures. They performed an EM analysis with a protocol to identify calcium
that had accumulated in the dendritic spines as a result of neural stimulation. It was
concluded that LTP induction resulted in a significant increase in the proportion of
MSBs. 3D reconstructions has shown that the presynaptic partners of MSBs frequently
belong to the same dendrite. It was also observed in this study that pharmacological
blockade of LTP prevented those morphological changes.

Knott et. al. in [48] investigated synapse formation and spine formation in an
experience-dependent learning paradigm. This was carried out on transgenic mice that
were subject to whisker trimming. Dendrites and spines were imaged live using two-
photon laser scanning microscopy and ssEM was used to resolve synapses afterwards.
It was observed that although spines tend to lack synapses soon after formation, the
spines that persisted a few days always had synapses. It was further observed that new
spines preferentially made synaptic connections with axonal boutons that already had
other synapses. In addition to this work, [37] also provides evidence to suggest that new
spines tend to form synaptic connections with large axonal boutons that already bear
at least one synapse.

A novel form of rewiring plasticity was suggested in [50] where synapses with multiple
contacts were formed within hours. It was observed that an axon of a pyramidal neuron
approaches the dendrites of every neighboring pyramidal neuron multiple times without
any structural bias towards the ones that end up forming synaptic connections. This
observation suggested that the microcircuit could be in a state of all-to-all readiness so
that it can rapidly change the synaptic connections without requiring the neurites to
grow towards new targets.

Live imaging spanning over periods of 15 hours was used for the first time to inves-
tigate the dynamic behavior of MSBs by Reilly et. al. [65]. Neuronal tissue cultures
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used in the experiment were obtained from rat hippocampus. For imaging, laser scan-
ning confocal microscopy (LSCM) was used in combination with immunolabeling in
order to simultaneously visualize pre- and postsynaptic partners. It was observed that
the spines contacting MSBs are seemingly in competition with each other giving rise to
some of the spines to become larger while the others disappear within tens of hours. This
observation considered along with prior observations of MSB formation as a result of
experience-dependent learning could suggest MSB formation as a transient phenomenon
resulting from experience-dependent learning.

5.2 Objectives of EM image analysis

As described in the previous chapter, male juvenile zebra finches learn a stereotyped
song from an adult male zebra finch. This process starts when the juvenile is around 15
days old and continues until it is 90 days old. During this period, sensorimotor learning
of the juvenile gradually turns its babbling into a stereotyped song that closely resembles
the tutor song.

The main objective of this chapter is to investigate effects on the formation of MSBs
in juvenile zebra finch HVC at varying levels of exposure to a tutor. Brain area HVC
of zebra finch song system is known to be responsible for vocal learning [30]. To study
the anatomical changes we are interested in at synaptic resolution, we carried out a
comparative analysis using nearly isotropic EM image volumes obtained from juvenile
zebra finches that were subject to different tutoring durations.

With the analysis that follows we set out to answer the questions below:

1. Is there a significant difference of the number of MSBs between a group of juveniles
that are tutored, and a group that is not tutored?

2. What changes can be observed in the number of MSBs when juvenile birds just
start to getting tutored (after 1 day)?

3. What difference in the number of MSBs can be observed between a group of ju-
veniles that just started getting tutored (for one day) and a group that has been
tutored for a longer period of time (for 24 days)?

Along the lines of related work mentioned in the previous section which were mainly
carried out on rodents, one hypothesis would be that the number of MSBs would be the
highest for the juvenile zebra finches that just started to get tutored. This is inline with
the observation in rodent experiments that:

� experience-dependent plasticity gives rise to an increase in the number of MSBs

� increase in MSBs is potentially a transient phenomenon where the number de-
creases over time

In summary the following hypothesis are to be tested:

1. The number of MSBs increase due to instructive experience

2. MSBs are seen as a transient state of newly formed synapses. Over time the the
additional postsynaptic partners are eliminated [37, 57, 65].
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1. The number of MSBs increase due to learning

axonal bouton spine head vesicles

2. The number of MSBs transiently increase and drop over time

Figure 5.3: Summary of hypotheses on the effect of the number of MSBs due to learning effects
that are to be tested for using an analysis of volumetric EM images.

5.2.1 Contributions

The experiments involving zebra finches were designed and carried out by Ziqiang Huang
of the Institute of Neuroinformatics, ETH Zurich and University of Zurich. FIBSEM
imaging was also performed by Ziqiang Huang. Leila Elabbady from Wellesley College,
Wellesley, MA, USA assisted in the annotation, counting and proofreading of MSBs.

5.3 Methods

5.3.1 Experiment with three groups of juveniles

The experiment setup shown in Figure 5.4 was designed to have three different tutor
exposure levels for three different groups of juvenile zebra finches of the same age. The
three groups used in the experiment are:

� Isolate (ISO) - juveniles in this group did not receive any tutoring. Each of them
are kept in isolation until they are 59 days old.

� Very late tutored (VL) - birds in this group receive tutoring just one day prior to
the end of the experiment. On this day (day 59) each juvenile bird is housed with
an adult male zebra finch to enable tutoring. Until such time each of the juveniles
in this group is kept in isolation.

� Fully tutored (FT) - from day 35 until the end of the experiment (for 24 days),
each bird in this group will be housed with an adult male zebra finch to be tutored.

Tissue samples of HVC of all the birds were obtained when they were 60 days old.
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Figure 5.4: Experiment setup: Juvenile zebra finches of equal age are categorized in three
different groups having four birds each. The experiment is carried out until each bird is 59 days
old by which time the tissue samples from brain area HVC are taken. The birds in the first group
(ISO) are kept in isolation and do not receive any tutoring during the course of the experiment.
The second group (VL: very late tutored) will not be tutored until day 58 and on the 59th day
each of those birds share a cage with a tutor. Each bird in the third group (FT: fully tutored)
will share a cage with a tutor from day 35 for 24 days until perfusion is carried out at the end
of the experiment.

5.3.2 Image acquisition

Tissue samples from HVC of each of the 12 birds in the three groups were obtained
for imaging. In each case FIBSEM imaging was performed on a cube of dimensions
8 µm× 8 µm× 8 µm resulting in nearly isotropic image volumes. The pixel size along the
XY plane was 5 nm× 5 nm and the thickness of each ‘section’ along the Z axis was set
to 10 nm.

5.3.3 Identification of MSBs

Given the average thickness of a ‘section’ of a FIBSEM volume was around 10 nm, a
typical MSB could span from 20 to 60 consecutive sections. The visual identification
process of an MSB involves checking each bouton for having more than one postsynap-
tic partners. Therefore the process of manually annotating an MSB involves scrolling
back and forth about each bouton and keeping track of the number of its postsynaptic
partners.

The following steps describe how MSBs were manually annotated in FIBSEM vol-
umes:

1. We start with overlaying synapse annotations on the volumetric image stacks. Al-
though not compulsory, annotated synapses makes the task of browsing for synaptic
boutons much faster.
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2. Split each FIBSEM volume into two halves - one half to be annotated in the
morning, the other in the afternoon by the same person on two different days.
This is to lower any annotator bias.

3. Scroll through each sub-volume observing each pre-annotated synapse. For each
synapse,

(a) Identify the bouton corresponding to this synapse by inspecting the volume
around it. Boutons are generally expected to be bulging out regions on an
axon. However in certain cases the bulging is not significant. Another impor-
tant feature of boutons is the presence of synaptic vesicle clouds.

(b) Scroll back and forth along the identified bouton while counting the number
of postsynaptic partners it has. Synaptic partners should be separate spine
heads or dendritic shafts. We cannot be certain if two separate spine heads
are part of the same dendrite because we do not have full 3D reconstructions
of the dendrites around the MSBs.

(c) Annotate the bouton as an MSB if it contains more than one postsynaptic
partner

4. The following information is recorded for each MSB annotated:

(a) Coordinates of MSB in the volume

(b) Number of postsynaptic partners

(c) Type of each synapse (symmetric or asymmetric)

(d) Number of mitochondria in the MSB

5. Proofreading of the annotations is done by a different expert to lower annotator
bias.

5.4 Results and discussion

MSBs are three dimensional structures that span several consecutive sections in an image
volume. The visualizations of MSBs shown in Figures 5.5 and 5.6 were produced using a
seeded region growing method [76] based on the graphcut [7] which is part of Ilastik [73].

5.4.1 Ambiguities in MSB identification

The main difficulty we faced during the identification of MSBs was in determining the
‘boundary’ of a bouton, especially when it is flatter, as opposed to being a clear pro-
trusion of the axon. This in turn made the process of counting number of synapses per
bouton difficult. As a result, deciding whether a set of synapses belonged to the same
bouton or not was not immediately clear. However this was only the case for less than
10% of the MSBs annotated in each volume.

To minimize any effects caused by this ambiguity we focused on not only the pro-
trusion of the bouton, but also the distance to synapses from its center. If a synapse is
away from the center of bouton by a distance larger than twice the approximate radius
at the center, that synapse would not be considered as part of this particular bouton.
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Figure 5.5: Annotation of a multi-synaptic bouton on a single EM section. The axonal bouton
is annotated in magenta whereas the two dendritic spines are annotated in green and gray.

5.4.2 Number of MSBs

The main hypotheses that drove the analysis carried out in this chapter as described in
section 5.2 was regarding the variation of the number of MSBs across different groups
that receive different exposures to the tutors. Figure 5.8 shows the MSB counts normal-
ized by volume averaged over each group. The normalized MSB count is observed to
be higher in the very late tutored group (VL) than in both other groups. The normal-
ized MSB count of the fully tutored group (FT) is in between that of the isolate group
(ISO) and the very late tutored group. Kruskal Wallis One-way analysis of variance,
there is not enough statistical evidence to conclude that the three groups have signifi-
cantly different distributions of the normalized MSB counts (p = 0.4497). Therefore, it’s
not possible to claim that we observe a statistically significant transient increase of the
MSB counts in the very late tutored group that drops when the birds are fully tutored,
although the average normalized MSB counts tend towards such a pattern.

Figure 5.9 illustrates the normalized MSB counts for each tissue sample of all 12 birds
in all three groups. A sub-volume analysis was performed for each volume by dividing
each volume into four equal sub-volumes and counting MSBs in each sub-volumes to
quantify the standard deviation of the normalized MSB count of each volume. The MSB
counts for each of the sub-volumes are shown in Figure 5.10. As shown in Figure 5.9,
the normalized MSB count does not seem to follow a significant trend within individual
groups as captured by the Kruskal Wallis One-way analysis of variance.
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(a)

(b)

Figure 5.6: (a) Three different views of a 3D reconstruction of the same multi-synaptic bouton
and postsynaptic partners shown in Figure 5.5. The axonal bouton is shown in magenta whereas
the two dendritic spines are shown in green and gray. 3D visualization is possible with 3D glasses
having separate red and blue channels. (b) Zoomed in 3D view of the same MSB.
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(a) (b)

(c) (d)

Figure 5.7: (a) and (b) show two different views of the 3D rendering of the axonal bouton shown
in figure 5.6. 3D views of two different dendritic spines making synaptic connections with that
bouton are shown in figures (c) and (d).

5.4.3 Number of synapses per MSB

Each MSB only contains synapses of one type: symmetric or asymmetric. We observed
that the average number of synapses seen in symmetric MSBs were significantly higher
than that of the asymmetric MSBs, with a p value of 0.000097346 from the Wilcoxon
Rank-Sum test. This observation was not affected by the tutor exposure. The average
number of synapses per symmetric MSB is close to 3.2 whereas it’s around 2.2 for
asymmetric MSBs as illustrated by the boxplot in Figure 5.12a. As shown in Figure 5.13,
MSBs of both types mostly contain two synapses although occasionally there are MSBs
with over five synapses.
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Figure 5.8: (a) Number of MSBs per µm3 averaged for each group. The one day tutored group
(VL - very late tutored) has a slightly more mean normalized MSB count than other two groups.
However, this difference was not found to be statistically significant. (b) Ratio of MSB to SSB
counts averaged over each group, showing a similar pattern to normalized MSB counts. Standard
deviation about the mean is denoted by the error bars.
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Figure 5.9: Bar graph showing number of MSBs per µm3 for each volume, where each of them
correspond to a different bird. The bars are color coded to show the group to which the bird
belonged. Green: isolates (ISO), blue: very late tutored (VT), red: fully tutored (FT). The error
bars correspond to the standard deviations obtained from the sub-volume analysis mentioned
under 5.10
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Figure 5.10: Each sub-plot shown in this figure corresponds to a sample that we analysed.
The sub-plots corresponding to the isolate (ISO) group, the very late tutored (VL) group and
the fully tutored (FT) group are shown in green, blue and red respectively. Each sub-plot has
four bars that correspond to the number of MSBs found in each sub-volume of a sample. The
sub-volumes are obtained by equally dividing the volume into 4. The MSB counts shown in
these graphs are not normalized. Please refer to Figure 5.9 for a comparison of normalized MSB
counts by volume.
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Figure 5.11: Average number of synapses per MSB in each volume. Blue bars represent MSBs
with symmetric synapses whereas gree bars are for MSBs with asymmetric synapses. MSBs
with symmetric synapses tend to have a higher number of synapses than MSBs with asymmetric
synapses.
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Figure 5.12: (a) Box plot showing average number of synapses per bouton over all the volumes.
The average number of synapses in MSBs with symmetric synapses is significantly higher than
MSBs with asymmetric synapses. (b) Ratio of MSB/SSB per each group.
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Figure 5.13: Number of boutons normalized by volume (per µm3) categorized by the number of
synapses it has for: (a) asymmetric MSBs, (b) symmetric MSBs. Irrespective of tutor exposure
and the type of MSB, most of them seem to have only two synapses although occasionally they
could contain over five synapses especially in the case of symmetric MSBs.
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5.5 Conclusion

Several previous studies performed on rat and mice provide evidence for an increase of
MSBs due to experience-dependent learning. Later studies suggest that this increase
is likely to be a transient phenomenon where the MSB numbers drop after an initial
increase. Our analysis focuses on studying the variation of the number of MSBs in brain
area HVC due to different levels of tutor exposure. HVC is known to play a crucial
role in song learning and vocalization. We performed an image driven analysis where
we obtained nearly isotropic 3D image volumes in the form of FIBSEM images from 12
juvenile birds that were kept in 3 different groups. On average, the group of birds that
were tutored only one day prior to tissue samples being taken showed a slightly increased
number of normalized MSB counts than the other two groups. One of the other groups
was kept in complete isolation while the other group was exposed to a tutor for the last
24 days before the tissue samples were obtained. However, further analysis shows that
the increase of the normalized MSB count was not statistically significant.

One important factor to be pointed out is that each of the volumes was of dimensions
8 µm × 8 µm × 8 µm. This approximately corresponds to one millionth of the average
volume of zebra finch HVC. Therefore it’s likely that much larger volumes of HVC tissue
samples need to be analysed to make a stronger conclusion about the variation of the
number of MSBs caused by tutor exposure.



Chapter 6

Discussion

6.1 Methods in EM-image-driven neuroscience research

Neuroscience research has greatly benefited from advances in imaging technologies and
computer vision methods over the last few decades. Insights obtained from electron
microscopy (EM) imaging has been instrumental in revealing neuroanatomical informa-
tion at nanometer resolution where the presence of structures such as synapses can be
observed.

EM-image-driven neuroscience research involves multiple steps starting from extract-
ing biological tissue from an organism until the images are obtained, annotated and
analysed for testing of biological hypotheses. The most important steps are as follows:

1. Extracting tissue

2. Sample preparation

3. Imaging using microscopes

4. Post-acquisition processing of images to adjust for distortions

5. Alignment of images

6. Manual/automatic/semi-automatic annotation of images

7. Performing statistical tests using annotated images

This dissertation spans stages 3, 4, 5, 6 and 7 and contributes with new methods
for stages 4 and 6. For EM imaging, image alignment and statistical testing we used
standard and state of the art methods available. This chapter provides a discussion of the
methods used and developed along with results obtained during the entire dissertation.

6.2 Neuroimaging using EM

A variety of imaging methods are being used for obtaining images of biological tissue in
neuroscience research. The focus of this dissertation only surrounds EM imaging that
gives the highest possible resolutions achievable to date.

Traditionally, electron micrographs are visualized such that neuron membranes and
synapses are shown in darker shades (closer to black) whereas cell interior is shown in

75
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lighter shades (light gray). Having good levels of contrast consistently across an entire
image facilitates more accurate image segmentation results using automated approaches.
Conversely, erroneous segmentation results mostly correspond to areas where the SNR
of a raw EM image is low. These problems are mainly caused by:

(a) Non-uniform heavy metal staining

(b) Thickness of sections being too high or too low

(c) Suboptimal parameters used in the microscope

(d) Imperfections of the microscope

For ssEM imaging, the thickness of the sections typically vary from 40 nm to 80 nm.
In ssTEM imaging, the contrast is proportional to the amount of electrons trapped by
the heavy-metal-stained structures of the specimen such as membranes and synapses.
Therefore, if a section is too thin, the image contrast will be less because the specimen
is not able to trap enough electrons. If a section is too thick, lateral displacement of
neural processes along the Z axis of the section will result in a blurry EM image. On the
other hand, ssSEM images are formed by backscattered or secondary electrons, instead
of the electrons passing through the specimen. Therefore, as long as it is large enough
the section thickness does not play a role in ssSEM image sharpness. However, if the
thickness of a section is too low, it is likely that the specimen gets damaged or there is
too little tissue to provide a sufficient signal.

While performing ssSEM, two of the main parameters for the microscope are the
dwell time and the probe current. The dwell time is the duration of time taken by the
electron beam to acquire a single pixel of the image. The probe current is the magnitude
of the rate of flow of electrons (current) onto the specimen that eventually result in the
backscattered and secondary electrons. The value of each of these two parameters should
be high enough so that a good signal is obtained. However, if the values are too high
the detected image will get saturated and the specimen will be destroyed. Furthermore,
a higher dwell time results in a longer period of time taken for imaging. Therefore,
by increasing the probe current, one could decrease the dwell time to retain the image
quality while speeding up the imaging process. An optimal set of parameters is usually
found by a trial and error process after starting off with a reasonable guess that matches
the needs.

For the ssSEM images used for validating section thickness estimates in Chapter 2,
a probe current of 400 nA and a dwell time of 0.7 µs was used. After setting these
parameters, in order to acquire a good quality image the aperture, focus and astigmatism
of the microscope have to be tuned. It’s an iterative process where the tuning has to start
at a low resolution and should be tuned repeatedly while increasing the resolution up to
the desired level. This process can take a longer period of time for an inexperienced user
of the EM equipment. That is mainly because the error that has to be optimized using
set of three parameters is purely visual and the understanding of the direction of change
of the error while varying each of the parameters needs some training. However, after
a few attempts and some guidance it becomes a routine task. This is the main reason
why the quality of the images acquired by a person has a steep improvement curve.

Performing SEM imaging on a specimen causes microscopic damages to the sample.
Figure 6.1 is an AFM image of a specimen used for SEM imaging showing the depth of



Chapter 6. Discussion 77

Figure 6.1: AFM image of a tissue section already imaged twice using ssSEM. The darker
regions correspond to surfaces with lower height, which is due to the damage caused by the
electron beam of the scanning electron microscope. The smaller region in the middle has been
imaged twice with SEM. AFM measurements show that each time an SEM image is obtained, a
layer of thickness around 20 nm of it is destroyed. Image provided by Jozef Adamcik, D-HEST,
ETH Zurich.

the damage caused by the electron beam. We observed that each time an SEM image is
obtained a layer of about 20 nm of the specimen is destroyed by the electron beam.
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6.3 Image post-processing

Image alignment

Each section obtained by ssEM imaging is usually acquired as a set of overlapping image
patches. Therefore, these image patches have to be stitched together and aligned with
the rest of the sections to form a cohesive 3D image stack. The currently available
solutions to the alignment problem which is also referred to as the registration problem
does not have an exact solution. The best performing methods to date attempt to get
an optimal alignment while minimizing the variation of image features across adjacent
sections [68]. When an optimal solution is not achievable, the usual practice is to perform
a pre-defined number of iterations of alignment adjustment that could hopefully result
in a good enough solution. It is worth noting that there is no standard score to reflect
the quality of an alignment. Therefore after applying an alignment routine, the user
has to visually make a judgement of the alignment quality. When the results are not
satisfactory the usual practice is to initialize the alignment with manual alignment points
and apply the alignment method again. The manual alignment points are chosen by the
user by following visual cues to describe the ono-to-one correspondence point in two
adjacent images so that they are aligned as closely as possible.

While the EM image processing community has been significantly improving the
alignment methods, one problem remains still unsolved. Especially with the advanced
methods allowing to ‘correct’ for alignment of sub-parts of the same section by rotating
and resizing, this could lead to a straightening of the neural processes giving an illusion of
a high quality alignment. Although this could potentially benefit automatic 3D neural
circuit reconstruction methods, it could lead to misrepresentation of the real data in
terms of the absolute 3D arrangement. Regularization of the optimization task could be
one solution to minimize such artefacts. However such effects are difficult to quantify
and correct for, because there is no ground truth data set for comparison of alignment
quality.

Anisotropy and thickness estimation

Sample preparation, cutting, alignment and imaging can cause anisotropy across the XY-
plane and deviation of the section thickness from the desired value. Chapter 2 addresses
this problem and provides an approach to estimate section thickness and anisotropy
purely based on image statistics.

To our knowledge, there is no standard method for estimating image anisotropy for
EM images. Furthermore, image segmentation methods usually assume isotropy along
the XY-plane unless otherwise mentioned. The main use of the anisotropy estimate
proposed in this work is to improve the thickness estimates, since the thickness estimation
is done using the image statistics learned along the XY-plane for which we know the
pixel resolution given by the microscope parameters. The primary use of a good thickness
estimate is to have a more accurate quantification of the volume of tissue that is later
used for any other volumetric analysis and to have more accurate spatial representations
of 3D reconstructions derived from volumetric data.

Currently there is no standard dataset to compare the performance of section thick-
ness estimation methods. As part of our work we have produced a dataset with directly
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measured section thickness values using atomic force microscopy. Using this dataset
we have shown that our method produces better thickness estimates compared to other
methods that provide indirect thickness estimates for serial section EM images. Our
method is based on learning image statistics at pixel level using gaussian process regres-
sion which readily provides the variance of thickness estimates. Furthermore, we factor
out anisotropy of the XY plane from the image statistics so that the thickness estimates
made using the image statistics are more accurate.

However, the anisotropy calculation also includes the intrinsic anisotropy of the image
itself. This is usually a result of the rare occurrences where structures such as membranes
and mitochondria appearing to be aligned towards the same direction in an image. This
can cause imperfect thickness estimates for smaller images where the intrinsic anisotropy
could be dominant compared to average statistics. Therefore it’s important to either
make sure the image size is large enough to not contain dominant intrinsic anisotropic
patterns in some of the images or remove such images by visual inspection so that they
won’t affect the average statistics learned from the image stack.

6.4 Manual annotation and automatic segmentation of im-
ages

For connectomics research there are significant attempts to produce wiring diagrams for
entire brains of organisms or parts of it that possibly correspond to known brain func-
tions. Since these efforts require thousands of man hours when performed completely
manually, there is an immediate need for automation. Chapter 3 of the thesis addresses
part of the automation problem by providing a method to automatically segment neu-
ron slices in 2D EM sections. The main contribution of this chapter is the ability of
the proposed method to result in lower topological segmentation errors by incorporating
topological constraints into the segmentation task that results in pixel labels for neuron
membrane and individual 2D neuron slices. The topological constraints used here are all
local constraints that can be fully specified before the optimization is started. Interest-
ingly, these local constraints give rise to global behaviors such as closed loops defining
membranes around each neuron slice. If a method were to use global constraints, the
usual approach is to iteratively solve the segmentation problem, look for violation of
global constraints, add the violated constraints and resolve the problem.

Other than using this method for annotating 2D images, it can be potentially incorpo-
rated into 3D neuron reconstruction pipelines that depend on 2D segments. Furthermore,
it can also be used to produce over segmentations of 2D neuron slices that can be used
for 3D neuron reconstruction methods that are based on multiple 2D hypothesis [23].

Automatic segmentation methods that use membrane probability maps had a boost
in their performance during recent years due to the high quality probability maps that
can be generated using convolutional neural networks (CNN). However, CNNs demand
significant computational resources and require a large amount of training data which
could be expensive to produce especially because CNN models are not good at gener-
alising across different datasets unless the datasets have very similar pixel level image
statistics. Therefore, CNNs have to be trained for individual datasets requiring training
labels for each dataset. More recent work in this field has been attempting to perform
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‘transfer learning’ where a network trained for one dataset can be used on a slightly
different dataset by retraining only the last layer. This potentially requires much less
training labels and also much less training time.

Automatic neuron segmentation methods directly benefit from any improvements
made to the image acquisition process and pixel level classifiers such as CNNs. However,
the accuracy of automated methods are still far away from being able to completely
replace the human annotator. One possible suggestion to have an improvement over
current segmentation approaches would be to focus on incorporating features from a
broader scope so that split/merge errors can be lowered using a broader topological
reasoning. A clear mathematical formulation for such an approach that can be efficiently
solved using existing optimization schemes still remains open.

One other way to significantly improve the efficiency of the annotation process would
be to have a combination of human and machine annotators to work in synergy. Such
methods are traditionally referred to as semi-automatic methods. Machines are able to
segment large volumes of data much faster than humans. If a method is able to speculate
with high confidence where an automatic segmentation method might have made a
mistake, a human annotator could correct it. In such a scenario, the human annotator
would only look at tricky segmentation decisions where the machines might have failed,
thereby significantly increasing the throughput ofimage annotation. Although this is not
entirely a novel idea, such a method is yet to be successfully designed and deployed.

An important issue that cannot be separated from neuronal circuit reconstruction
is the proofreading of annotations, which is generally performed manually. This results
in a similar bottleneck in terms of efficiency as in manual image annotation. There-
fore, improvements in proofreading methods would also greatly benefit neuronal circuit
reconstruction efforts as well.

6.5 Hypotheses testing based on image data

Connectomics research thoroughly benefits from high throughput imaging and image
annotation methods which are preferably automatic or semi-automatic. Therefore it
requires a significant contribution from computer vision and machine learning method
development. In fact, applications of imaging and image processing methods in neuro-
science research go beyond investigations of neuron connectivity. Volumetric EM images
can be used for quantitative and qualitative analysis of neuroanatomical structures such
as synapses, synaptic vesicles, mitochondria, microtubules, axonal boutons, and den-
dritic spines. In Chapter 5 of this thesis an analysis of the variation of multisynaptic
boutons (MSBs) as a result of sensorimotor learning is presented. The hypothesised
transient change in the number of MSBs shortly after tutor exposure is not observed
to be statistically significant, although a trend towards such a behavior could be seen.
The analysis was performed using FIBSEM datasets, each of which corresponding to a
8 × 8 × 8 µm3 specimen of tissue taken from juvenile zebra finch HVC. Further analy-
sis into this phenomenon should preferably use larger image volumes, for which either
ssSEM or ssTEM has to be used instead of FIBSEM due to the specimen size limitations
of the latter. However both ssSEM and ssTEM have less resolution in the third dimen-
sion of the image volume compared to FIBSEM which might render 3D reconstruction
efforts more challenging.
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Furthermore, an interesting observation could be made regarding the types of MSBs
in all volumes analysed. MSBs having symmetric synapses (at inhibitory neurons) sig-
nificantly outnumbered MSBs having asymmetric synapses (on excitatory neurons) irre-
spective of the experimental conditions.

6.6 Conclusion

The scope of this dissertation spans from EM image acquisition to development of com-
puter vision methods to automatically analyze EM images, and applying image process-
ing methods for biological hypothesis testing. Over the years, there have been many
contributions from the EM image analysis community to different stages of the EM im-
age analysis workflow. These methods mainly catered to post-acquisition processing and
image annotation. Although significant progress has been made in recent years, there is
still a plenty of room for improvement in terms of accuracy at every step of this pipeline.
The methods developed as part of this dissertation contribute towards post-acquisition
image processing and automated neuron segmentation that could potentially result in
an overall improvement of the EM image analysis workflow.
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