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Abstract—Lung cancer, a leading cause of mortality globally,
demands early and accurate detection to improve patient out-
comes. Current diagnostic methods, primarily relying on CT
scans, face challenges in lung cancer subtype identification,
particularly due to the scarcity of extensive medical image
datasets for each subtype. This study addresses this limitation by
leveraging prototypical networks, an innovative few-shot learning
approach, which excels in scenarios with limited data. The
proposed method capitalizes on a small number of samples per
category, integrating a pre-trained model for feature extraction
from lung CT scans. We rigorously evaluated the model’s
performance, focusing on its accuracy relative to the sample size
per category. Remarkably, the method achieved a 98% accuracy
rate after 15 epochs, showcasing its efficacy. This research not
only confirms the feasibility of using prototypical networks for
lung cancer subtype classification but also opens new avenues
for applying few-shot learning techniques in medical imaging.
Our findings hold significant potential for enhancing lung cancer
diagnostics, thereby contributing to improved patient care and
survival rates.

Keywords—CT Image, U-net Architecture, VGG16, ResNet50,
DenseNet

I. INTRODUCTION

Lung cancer stands as a critical global health crisis, respon-
sible for the deaths of hundreds of people daily worldwide.
It is one of the most lethal and prevalent cancers, typically
developing in the lung tissues. Accurate identification of the
type of lung cancer is crucial, as it significantly influences the
patient’s treatment and prognosis. This underscores the urgent
need for more precise diagnostic methods and therapeutic
interventions.

The American Cancer Society categorizes lung cancer into
two primary types: non-small cell lung cancer (NSCLC) and
small cell lung cancer (SCLC) [1]. NSCLC is further divided
into three major subtypes: Adenocarcinoma, Squamous cell
carcinoma, and Large cell carcinoma [1]. SCLC, however, is
a separate classification altogether. Differentiating these types
is vital for developing tailored treatment plans and enhancing
patient survival rates.

In practical applications, encountering cases for each of
these types is rare, often presenting as singular instances or

Fig. 1: CT scan of a healthy person.
Adapted from [2]

Fig. 2: CT scan of a patient
with Large Cell Carcinoma. Adapted
from [3]

just a handful in training datasets. The feasibility of collecting
extensive medical images for each subtype is low. Challenges
also arise due to privacy and data security concerns, hindering
the acquisition of the large datasets typically required for
thorough research.

Computer-Aided Detection/Diagnosis (CADe/CADx) sys-
tems are increasingly utilized in the diagnosis of lung cancer
due to their precision, efficiency, and rapid processing abil-
ities. These systems analyze detailed cross-sectional images
of the chest, facilitating the identification of small nodules
and anomalies within the lung tissue. However, a challenge
with many CADe/CADx systems is that they are often trained
on datasets predominantly featuring common types of lung
cancer. While these systems are effective for identifying and
classifying these common cancer types, they may not en-
compass the full clinical and radiological spectrum of lung
cancer, potentially limiting their effectiveness in diagnosing
less common or atypical lung cancer types.

Recent advancements in image processing and deep learning
have shown promise in medical image analysis for disease
diagnosis using CT scans. Various deep learning methods for
lung cancer detection using CT images have been proposed,
leveraging large labeled datasets [4]–[8].

However, applying deep learning for lung cancer type
classification is a daunting task. To address this, the emerging
field of few-shot learning in machine learning shows potential.979-8-3503-8486-4/24/$31.00 ©2024 IEEE
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Few-shot learning aims to achieve effective learning outcomes
with limited labeled data in the training dataset, which includes
instances of inputs paired with their corresponding outcomes.

In few-shot classification, the support set and query set are
key components. The support set, containing a small number
of examples per class, aids in training the model. For instance,
a 4-way 5-shot setting indicates five examples for each of the
four classes. The query set is used for testing the model’s
ability to generalize. It includes new examples not seen during
training, and the model must classify them accurately based
on the knowledge gained from the support set.

Prototypical Networks, introduced by Snell et al [9], have
significantly advanced the field of few-shot learning. These
networks are adept at classifying small sample sizes by form-
ing a class prototype through the mean of features within a
class, and then making predictions based on the similarity to
new instances. Prototypical Networks have been applied in
various domains, such as image recognition, natural language
processing, and medical image analysis [10], [11], [12], [13].
In this study, the Prototypical Network was employed to
effectively tackle the challenge of handling a limited number
of examples per class.

II. BACKGROUND

Few-shot learning, an emerging domain within machine
learning, has gained prominence for its ability to tackle the
challenges posed by limited data availability and enhance
model generalization across various fields. This approach
is primarily divided into two categories: non-meta learning
and meta-learning methods. Among the latter, Prototypical
Networks stand out as a notable meta-learning technique for
few-shot learning. These networks utilize a nearest neighbor
strategy, which simplifies the meta-testing stage by reducing
the need for extensive hyper-parameter tuning, thereby en-
abling rapid inference.

Prototypical Networks are designed to facilitate model gen-
eralization with only a few examples available per category or
class. This methodology has shown potential in medical image
analysis, as illustrated by [13], who applied it to melanoma
detection using a limited dataset of dermoscopy images. This
underscores the utility of few-shot learning in scenarios where
medical image data is scarce.Another notable application was
presented by Yifan Jian et al. [11], who developed a novel ap-
proach for CT-based Coronavirus diagnostics using controlled
domain adaptation techniques. This method is particularly
advantageous in situations where only a limited number of
named CT images are available, a frequent limitation in
medical imaging studies.

Ahuja et al. [10] explored a P-shot n–ways Siamese net-
work, combining deep learning principles with prototypical
nearest neighbor classifiers. Their research focused on clas-
sifying COVID-19 infection in lung CT scans, examining
how different pre-trained network CNN models influence
the performance of Siamese-based multi-class classification
networks.

TABLE I: RESULTS FROM PRIOR RESEARCH INVOLVING FEW-SHOT
LEARNING APPLIED TO MEDICAL IMAGE ANALYSIS

Domain Dataset Performance

Siamese network
based model [11]

Covid-19 CT
segmentation
from https:
//medicalsegmentation.
com/covid19

Accuracy
0.8040±0.0356
F1-score
0.7998±0.0384

Prototypical
closest neighbors’
classifiers
combined with
a P-shot N-ways
Siamese network
[10]

Chest CT scans from
1110 patients in medical
hospitals from Moscow,
Russia

Accuracy 98.07%
F1-Score 95.10%

A model based on a
few-shot U-Net ar-
chitecture [14]

Lung-PET-CT-DX
dataset in TCIA
database. PET/CT
scans from 87 patients

Accuracy 99%
Precision 70.62%

Comparison using
both Zero-shot
learning and Few
Shot Learning [15]

LC25000 dataset.
25,000 color images in
5 classes

99.87% of
accuracy from
few-shot setting

Nicholas et al. [14] innovated in dynamic few-shot learn-
ing for lung cancer lesion segmentation, merging few-shot
learning’s strengths with the U-Net architecture. Their ap-
proach diverged from traditional methods by integrating global
neighborhood PET/CT method fusion, enhancing lung cancer
detection and classification.

Meldo et al. [7] developed a Computer-Aided Diagno-
sis system using a Siamese neural network to differentiate
various lung conditions and establish a comprehensive lung
cancer classification. This network was trained on a dataset of
segmented and labeled lung abnormalities, including tumors,
categorized into distinct groups based on CT image patterns.
The dataset exclusively contained confirmed tissues, validated
through meticulous examinations, ensuring high data integrity
and reliability.

Fu-Ming Guo et al. [15] utilized a pre-trained Vision
Transformer (ViT) for classifying lung cancer on histologic
slices, employing both Zero-Shot and Few-Shot settings. Their
study demonstrated the ViT model’s remarkable performance,
achieving an impressive 99.87% accuracy in the Few-Shot
setting with limited epochs, showcasing the effectiveness of
pre-trained models in handling complex classification tasks.

The research highlighted thus far illustrates the significant
strides made in applying few-shot learning to lung cancer
identification. However, these studies have not fully explored
the potential of prototypical networks or the impact of dif-
ferent feature extraction methods and the integration of U-
Net architecture for segmentation purposes. Addressing these
gaps is crucial to advancing the understanding of lung cancer
type identification through few-shot learning.This paper aims
to delve deeper into the role of prototypical networks in lung
cancer classification. It will also evaluate the efficacy of three
pre-trained feature extraction methods and their synergy with
convolutional neural networks within the context of few-shot
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(a) Before Segmentation (b) After Segmentation

Fig. 3: The CT scan image depicting Squamous Cell Carcinoma before the
application of the U-Net (R321) architecture for segmentation, followed by
the post-segmentation result after applying U-Net. Adapted from [3]

learning. This comprehensive analysis is expected to enrich
the understanding of the nuances involved in lung cancer type
identification, paving the way for more effective and nuanced
diagnostic approaches in the future.

III. METHODOLOGY

A. Dataset

The study utilized CT scan images from the Lung-PET CT-
Dx dataset housed in The Cancer Imaging Archive (TCIA),
generously provided by the National Cancer Institute [16].
Accompanying XML Annotation documents provided crucial
information on tumor locations via bounding boxes. This
dataset, curated retrospectively, includes patients under lung
cancer suspicion, all of whom underwent standard lung biop-
sies and PET/CT imaging.

The dataset comprises CT images of 355 subjects, each
represented as a series of DICOM images. For class labeling
within this dataset, a straightforward naming convention was
adopted, based on the initial letter of the patient’s name.
Patients labeled with ’A’ were classified as having adeno-
carcinoma, ’B’ for small cell carcinoma, ’E’ for large cell
carcinoma, and ’G’ for squamous cell carcinoma.

B. Image Pre-processing

The initial step involved extracting pixel data from DICOM
images. These pixels, the fundamental elements of digital
imaging, represent the luminosity of the captured scene.
The subsequent step was converting these pixel values into
Hounsfield Units, a standardized scale in medical imaging,
which enhances image clarity and diagnostic accuracy.Noise
reduction in CT images is crucial to prevent misinterpretation.
Median filtering was applied to diminish noise. This process
involves arranging neighboring pixel values in numerical order
and replacing the central pixel with the median value.

C. Image Segmentation

Image segmentation involves dividing an image into distinct
regions or classes based on specific characteristics.The U-net
architecture was utilized for this study, known for its efficacy
in medical image segmentation [14], [17], [18]. Johannes et

(a) Before Segmentation (b) After Segmentation

Fig. 4: The CT scan image depicting Adenocarcinoma before the application
of the U-Net (R321) architecture for segmentation, followed by the post-
segmentation result after applying U-Net. Adapted from [3]

al. [19] developed a modified U-net (R-231) model, which
excelled in the LOLA11 challenge, achieving high scores in
metrics like Dice similarity coefficient (DSC), Hearty Haus-
dorff distance (HD95), Mean Surface Distance (MSD), and
cancer cross-over. Due to its superior performance, the U-net
(R-231) model was chosen for segmenting preprocessed CT
images. Figures 3 and 4 illustrate the output before the U-
net(R-231) architecture was applied.

D. Feature Extraction

Feature extraction in medical imaging is crucial for the
automated acquisition of complex image features, enhancing
training representations. We employed three pre-trained deep
learning models: VGG16 [20], ResNet50 [21], DenseNet [22],
and a custom Convolutional Neural Network with three con-
volutional layers, ReLU activation, and a pooling layer. These
models facilitated the extraction of nuanced features from lung
CT images.

E. Prototypical Network

In the few-shot classification, a small support set of N
labeled examples, each represented by a D-dimensional feature
vector from a pre-trained model, was used. A prototype
for each lung cancer type was calculated by averaging the
feature vectors within a class. These prototypes represented
the respective classes during inference.

A key element of the prototypical network is the distance
matrix, which measures the similarity between the support
and query sets. Euclidean distance, as suggested by Snell
et al. [9], proved more effective than cosine similarity for
this purpose. When employing Euclidean distance, the model
effectively functions as a linear model with a specific param-
eterization.The overall architecture of the model is shown in
figure 5.

F. Episodic Learning

The performance of the model was improved by implement-
ing episodic learning. In this method, the model is directly
tuned for few-shot classification tasks within each episode,
defined as an iteration cycle or an epoch.
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Fig. 5: Overall architecture of the prototypical network.(A) Support set has four classes with a limited number of shots.(B) Query set consists of the samples
from the classes.(C) Prototype feature vector for each class is generated.(D) Feature vector from each query images.(E) Similarity between each prototype
and the query image is calculated using the Euclidean distance.

During each epoch, the training set undergoes forward and
backward propagation and is divided into several batches. The
number of iterations per epoch corresponds to the number
of batches processed. The support set consists of N-way k-
shot random samples, and the query set comprises q random
samples for each of the N classes in the support set. These
datasets are generated anew in each episode. The model’s
meta-learner is trained over a series of episodes, learning
from the limited dataset, a process termed meta-learning.For
this study, the CrossEntropyLoss function was used to define
the loss criterion, and the Adam optimizer was employed for
updating the model parameters. The learning rate was set at
0.001, dictating the step size in the optimizer’s parameter
space.

IV. RESULTS & DISCUSSION
The experiment involved the utilization of three pre-trained

deep learning models and a convolutional neural network as
the feature extractors. The performance evaluation of each
pre-trained model was conducted by assessing metrics such
as Precision, Recall, F1-Score, and Accuracy score. This
evaluation was conducted under varying conditions where the
number of shots per class in the support set was altered,
aiming to gauge how well the models perform under different
scenarios of data availability for each class. Table II presents
the Precision, Recall, and F1-Score for four different models,
when applied to the prototypical network.

The results demonstrate how the model’s performance
changes with the number of labeled examples per class. Figure
6 displays the accuracy for each model with the number of
lung CT images per class, indicating that the highest accuracy
scores are attained for all models with more than 3-shot
settings.

Notably, the highest accuracy observed was 98% for the
ResNet50 model with a 5-Shot setting for each class. This

TABLE II: PERFORMANCE METRICS FOR INDIVIDUAL FEATURE EXTRAC-
TION MODEL IN A K-SHOT 4-WAY SETTING.(EPOCHS=3)

Feature
Extraction
Model

Shots Per
Class = K Precision Recall F1-Score

VGG16

1-Shot 0.74 0.68 0.68
2-Shot 0.82 0.81 0.81
3-Shot 0.86 0.81 0.82
4-Shot 0.77 0.75 0.74
5-Shot 0.69 0.66 0.65

CNN

1-Shot 0.6 0.56 0.54
2-Shot 0.88 0.87 0.87
3-Shot 0.68 0.68 0.68
4-Shot 0.95 0.93 0.93
5-Shot 0.87 0.83 0.82

DenseNet

1-Shot 0.79 0.68 0.66
2-Shot 0.95 0.93 0.93
3-Shot 0.88 0.87 0.87
4-Shot 0.87 0.83 0.82
5-Shot 0.9 0.9 0.9

ResNet50

1-Shot 0.33 0.43 0.33
2-Shot 0.22 0.31 0.25
3-Shot 0.76 0.68 0.69
4-Shot 0.71 0.62 0.6
5-Shot 0.98 0.98 0.98

superior performance can be attributed to several factors in-
herent to the ResNet50 architecture and its compatibility with
few-shot learning. ResNet50 is known for its deep structure
and residual connections, which allow it to learn complex
features effectively, an advantageous trait for nuanced medical
imaging tasks. Furthermore, ResNet50’s ability to generalize
from smaller datasets, crucial in few-shot settings, combined
with the Prototypical Network’s approach of learning a metric
space for classification, likely contributed to its outstanding
performance.

Comparative studies, such as those by Shivan et al. [23] and
Shital et al [24], have also employed ResNet50, demonstrating
its efficacy in similar tasks. Table III compares the results
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Fig. 6: Accuracy comparison for each pre-trained model before meta-training
with 5-Shot 4-Way Setting.(Epochs=3)

obtained by these studies with the outcomes from our research.

TABLE III: COMPARISON OF THE ACCURACY BETWEEN EXISTING METH-
ODS UTILIZING RESNET50 FOR FEATURE EXTRACTION AND THE PRO-
POSED PROTOTYPICAL NETWORK.

Method Accuracy
Convolutional Neural Network with
RestNet50 [23] 97.05%

Support Vector Machine with
ResNet50 [24] 97.53%

Prototypical Network with ResNet50 98%

Overall, the models achieve their best performance when
there are more shots per class, particularly with 4 or 5-
Shot classes. This trend underscores the importance of having
a sufficient number of training examples to achieve higher
accuracy and F1-Scores. Figure 7 shows the training accuracy
and loss tracked over multiple episodes for each model. Each
model was set to learn for 15 episodes, revealing interesting
patterns in their learning processes.

The VGG16 model exhibited fluctuations in training accu-
racy, suggesting instability in its learning cycle, possibly due to
variations in data availability or task complexity. In contrast,
the CNN model displayed a consistent increase in training
accuracy, indicative of a steady learning process, potentially
due to its architectural efficiency and data handling. The
ResNet50 model’s training accuracy showed initial variability
but a notable increase in later episodes, despite some inconsis-
tencies. The DenseNet model initially experienced fluctuating
training accuracy, which stabilized as training progressed,
indicating effective adaptation to the dataset.

These observations highlight the complex nature of train-
ing neural networks, influenced by factors such as model
architecture, data distribution, and convergence dynamics. The
experiment, encompassing 15 training episodes with 5 support
images and 3 query images from each class, demonstrated
that both the ResNet50 and CNN models achieved impressive
accuracy, reaching 98%.

The research was conducted using a single dataset from
TCIA, providing valuable insights into the application of pro-
totypical network architecture for lung cancer classification.
However, the reliance on a single dataset may affect the

Fig. 7: The graphs compares the training accuracy over 15 epochs for each
feature extraction model. The chosen configuration utilized five shots per class
and a learning rate of 0.001.

generalizability of the results. Future studies could benefit
from incorporating diverse lung CT image datasets labeled
with specific lung cancer types, enhancing the reliability and
broader applicability of the findings.

Incorporating datasets with varied characteristics and rep-
resentations of lung cancer types would offer a more robust
validation of the prototypical network’s effectiveness across
different imaging conditions and patient demographics. Such
an approach would also help to ascertain the scalability and
adaptability of the proposed model in real-world clinical
settings.

Moreover, the fluctuating performance of models like
VGG16 and ResNet50 in certain shot settings prompts further
investigation. It raises questions about the models’ robustness
and their ability to handle data scarcity, which is a common
challenge in medical imaging. Future research could ex-
plore the underlying reasons for these fluctuations, potentially
through more granular data analysis or feature visualization
techniques. This could lead to improved model designs or
training strategies that are more resilient to variations in data
availability and complexity.

Additionally, the consistent performance improvement of
the CNN model across different episodes suggests a possible
avenue for optimizing few-shot learning models for medical
imaging tasks. Investigating the factors contributing to this
consistency, such as the model’s architecture or the nature of
the data it handles best, could provide valuable insights for
developing more effective learning algorithms in the field.

The study also underscores the importance of choosing the
right feature extraction model and the amount of training data
in achieving optimal results in few-shot learning scenarios.
This finding has practical implications for developing efficient
diagnostic tools, especially in situations where acquiring large
datasets is challenging. It emphasizes the need for a balanced
approach that considers both the computational strengths of
the model and the characteristics of the available data.

In conclusion, while the study demonstrates the promising
potential of using Prototypical Networks with pre-trained
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models like ResNet50 for lung cancer classification, it also
highlights the complexities involved in machine learning ap-
plications in medical imaging. The exploration into different
model behaviors and their training dynamics offers a valuable
contribution to the field. However, the reliance on a single
dataset suggests the need for caution in generalizing the
results. Future research should aim to expand the dataset
diversity to further validate and enhance the applicability of
these findings.

V. CONCLUSION & FUTURE WORK

This study focused on the classification of four main types
of lung cancer using CT scan images, leveraging the potential
of few-shot learning in scenarios with limited training data.
The core methodology employed the prototypical network, a
well-regarded model in few-shot learning, complemented by
various pre-trained models and a custom CNN for effective
feature extraction from lung CT images.

The findings of this research lay a foundational framework
for further advancements in lung cancer detection using CT
scans and few-shot learning techniques. Such advancements
could extend to automated medical report generation for
radiology images [25], enhancing diagnostic efficiency and
accuracy.

A promising direction for future research is the integration
of Siamese Neural Networks with Prototypical Networks.
Siamese Networks excel in identifying subtle differences [26],
a crucial aspect in medical imaging, while Prototypical Net-
works are effective in classification by creating representative
models of each class. The synergy of these networks could
potentially overcome individual limitations and lead to a
more robust and precise system for lung cancer classification.
The challenge lies in effectively combining these networks
to harness their complementary strengths while addressing
potential integration issues, presenting an intriguing problem
for future exploration.
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