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Abstract

The task of segmentation of multispectral images, which are images with numer-
ous channels or bands, each capturing a specific range of wavelengths of electromag-
netic radiation, has been previously explored in contexts with large amounts of labeled
data. However, these models tend not to generalize well to datasets of smaller size.
In this paper, we propose a novel approach for improving few-shot segmentation per-
formance on multispectral images using reinforcement learning to generate representa-
tions. These representations are generated as mathematical expressions between chan-
nels and are tailored to the specific class being segmented. Our methodology involves
training an agent to identify the most informative expressions using a small dataset,
which can include as few as a single labeled sample, updating the dataset using these
expressions, and then using the updated dataset to perform segmentation. Due to the
limited length of the expressions, the model receives useful representations without any
added risk of overfitting. We evaluate the effectiveness of our approach on samples
of several multispectral datasets and demonstrate its effectiveness in boosting the per-
formance of segmentation algorithms in few-shot contexts. The code is available at
https://github.com/dilithjay/IndexRLSeg.

1 Introduction
Multispectral imagery is a powerful tool in a variety of applications in domains such as
remote sensing, medical imaging, and thermal imaging. The inherent ability of multispectral
images to capture data across various wavelengths of light provides information about the
dynamics of the surface being captured. A fundamental task in capturing this information is
image segmentation, which involves identifying distinct regions or objects based on certain
criteria. However, existing work relies on large datasets to achieve good performance. The
core challenge of working with smaller datasets is generalizing to a wider population.

Spectral indices have been widely employed ([23, 28, 31]) as generalized representations
of a class of interest. These indices are mathematical expressions between the bands of
a multispectral image, designed to create representations based on the underlying reflective
properties of the object of interest. For instance, the Normalized Difference Vegetation Index
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Figure 1: A one-shot example of the proposed approach.

(NDVI) is commonly used to assess vegetation health, while the Normalized Difference
Water Index (NDWI) is employed for water body detection.

However, the utility of spectral indices is constrained by their availability and adaptability
to different contexts. Typically, these indices are designed for a limited set of predefined
classes, making them less effective when applied to novel classes or datasets. Furthermore,
the process of creating custom indices tailored to specific segmentation objectives is often a
laborious and iterative trial-and-error procedure that demands substantial domain expertise.

In this paper, we propose a novel approach for improving segmentation performance on
multispectral images, as demonstrated by Figure 1. Our system begins by discovering a
mathematical expression (in other words, a spectral index) that is expected to yield a good
segmentation performance. We accomplish this using a reinforcement learning formulation
to explore possible expressions/indices, train a model to generate expressions with higher re-
wards, and then identify a new set of expressions with the improved model to facilitate better
exploration. After identifying a suitable mathematical expression, we evaluate the expres-
sion on each image and integrate the resulting channel with the rest (or a subset of the rest)
of the channels of the image. In other words, the proposed approach can be interpreted as
a data augmentation technique that helps to cope with the lack of data. Furthermore, due to
the finite number of variations that the mathematical expression could take, this approach en-
ables the inclusion of useful representations without an added risk of overfitting, a common
pitfall when training on small datasets.

Accordingly, the contributions of our research are as follows:

• We propose a novel application of reinforcement learning for discovering spectral in-
dices that improve few-shot segmentation performance in multispectral images.

• We address the challenging task of few-shot multispectral segmentation which, to the
best of our knowledge, has not been previously explored in the literature in a general
context.

• We demonstrate the effectiveness of our proposed approach on several datasets by
comparing the performance against several baseline models.

2 Background and Related Work
Spectral indices for segmentation. Spectral indices have been used to assist segmenta-
tion in a variety of techniques. Traditional methods directly use algorithms such as Otsu’s
thresholding [22] or watershed algorithms [16] to binary segment the single channel result
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of evaluating spectral indices [23, 24, 31] (see Section 3.2 for more details on evaluating
indices). However, these techniques are only viable when there already exist spectral in-
dices tailored to the classes of interest. Our work draws inspiration from MSNet [28] which
utilizes spectral indices for the segmentation of arbitrary classes. The authors demonstrate
the benefits of incorporating the Normalized Difference Vegetation Index (NDVI) and the
Normalized Difference Water Index (NDWI) as additional channels of multispectral images
for segmentation. This suggests that these indices carry some information that is not easily
represented by deep learning models.

Automated remote sensing index generation. In [29], Vayssade et al. explore index gen-
eration under a finite set of predefined forms of equations (such as linear and linear ratio) and
achieve promising results in several vegetation classes. In contrast, our approach does not
limit the form of the generated expressions and explores classes in a broader set of domains.

RL for expression induction and theorem proving. The tasks of expression induction
and theorem proving follow a formulation similar to that of index generation as explored in
this research. One early instance of these tasks is found in [30] where an RL agent is em-
ployed to generate symbolic expressions, specifically polynomial expressions. In this setup,
an agent, implemented as a Recurrent Neural Network (RNN), iteratively selects symbols
that collectively form an expression in post-order notation. Building upon a similar foun-
dation, [19] adopts an analogous strategy to leverage RL to estimate the policy function of
an RL agent, with the dimensions of the state serving as the operands of the mathemati-
cal expression. RL-based agents have also been used to navigate tableaux trees (trees with
branches representing sub-formulae of theorems) for proving first-order logic [9, 17]. The
representation of the state in our methodology contrasts with that of these techniques. As
opposed to using a tree-based representation with post-order traversal, we use the expres-
sion symbols under in-order traversal to represent the state. This makes each state directly
human-readable, resulting in an improved explainability of a given state.

Monte Carlo Tree Search (MCTS). MCTS [5] is an algorithm that uses simulations to
determine the best action to be taken from a given state. The simulation is done iteratively
where each iteration consists of selecting an action, expanding a branch on a tree for the
selected action, followed by the simulation from a leaf node on the tree. The exploration-
exploitation trade-off is managed by a measure (often the Upper Confidence Bound (UCB1)
score [3]) which prioritizes nodes that have a low visitation count and high returns after
simulation. While the vanilla MCTS algorithm takes random actions during simulation, later
approaches [2, 11, 26, 27] use a neural network to guide the simulation. These algorithms
are broadly known as Neural MCTS. Our proposed methodology builds on these concepts
by using a GPT-based model architecture as the policy network to guide the simulation in
identifying an effective spectral index for a given segmentation task.

Few-shot Segmentation. Few-shot segmentation is the task of segmenting objects using
a small amount of labeled data. Most existing work approaches this task by comparing the
unlabeled image (query image) against the labeled image (support image) at inference time
[4]. However, some work uses techniques such as data augmentation [7, 8, 33] and sample
synthesis [1, 32], either as standalone techniques or for boosting the performance of existing
techniques. Our solution falls into the latter category of performance-boosting algorithms,
as it can be considered a preprocessing step.
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Figure 2: The proposed methodology and its four main components. (1) Index Generator
(2) Index Evaluator (3) Dataset Updater (4) Segmentation Trainer.

3 Methodology
Figure 2 presents the proposed methodology consisting of four main components: (1) In-
dex Generator: Uses the train set (image-mask pairs) to generate an expression. (2) Index
Evaluator: Uses the generated expression and the original images to create the evaluated
indices. (3) Dataset Updater: Uses the evaluated indices to update the original images. (4)
Segmentation Trainer: Trains a segmentation model using the updated images.

We may interpret this process as follows. The first component identifies the best augmen-
tation for the data. The second component executes the augmentation on each input image to
create its respective single-channel augmented image. The third component combines each
augmented channel with its respective original input image. In the sections that follow, we
discuss the first three components. The fourth component, the segmentation trainer, can be
any multispectral segmentation approach.

3.1 Index Generator
We begin this section by describing the formulation of the RL problem. This will be followed
by a description of the agent’s training process.

3.1.1 RL Formulation

States and Actions. The state is defined by the currently generated portion of the mathe-
matical expression while the actions are represented by the symbols that form the expression.
Additionally, a terminal state is defined by the presence of the "=" symbol at the end of the
expression. Accordingly, the action space consists of the following symbols:

• Expression symbols: (, ), +, -, *, /, square, square root (8 symbols)

• Image Channels: c0, c1, ... , cnchannels−1 (nchannels symbols)
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• End symbol: = (1 symbol)

At each step, the environment appends the newly generated action/symbol to the cur-
rent expression and returns it as the output state, along with the reward calculated using
the reward function. The maximum length of the expression/state is a hyperparameter that
can be adjusted based on the context or domain (longer expressions create more complex
representations).

MCTS Reward. The reward for guiding MCTS is defined for three different cases as fol-
lows.

R(s) =





−1, if episode ended at an invalid state
r(s), if episode ended at a valid state
0, otherwise (episode has not ended)

(1)

Here, the function r(s) approximates how good the given state s is for improving the
segmentation performance. In addition to the expression, the reward function shall also use
the existing labeled images to calculate the reward. An evaluated index will be calculated
for each image of the training set as per Section 3.2, which can thereby be used to calculate
the reward. Each evaluated index is a single-channel image with the same height and width
as the original image. As part of this research, we evaluate several different reward functions
as choices for r(s) that follow the same base structure shown below:

score = f (E ,M) (2)
score′ = f (J −E ,M) (3)

r(s) = min{score,score′} (4)

where E ∈ RH×W refers to an evaluated index that has been preprocessed (see Appendix ??
for details), M ∈ RH×W refers to the ground truth segmentation mask corresponding to the
image from which E is produced, f (E ,M) refers to the heuristic function for estimating the
utility of using E to predict M, and J ∈ RH×W is a matrix of ones. Note that the final score
for a given expression is the average of r(s) over all or a subset of the training images.

The evaluated functions for the choice of f in equations 2 and 3 include the F1 Score
(with a threshold for E of 0.5 to get a binary mask), Area Under the Curve (AUC) (with
threshold, similar to the F1 score), Cosine Similarity (CS), Intersection over Union (IoU),
and the Pearson Correlation Coefficient (PCC).

The intuition behind the use of the minimum of score and score′ is that J −E is a simple
operation for any network, given E , and either of the two may be the default representa-
tion being used within the network, based on the initialization of weights. Obtaining the
minimum of the two scores penalizes the lack of information in either of the representations.

Training Reward. Once an expression is generated, we calculate the actual segmentation
performance of the expression by training a model using only the evaluated indices. Since the
expressions used in training are generated much less frequently than in MCTS simulations,
this is a practical way to obtain a more accurate score for the performance gained from the
expression.
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Figure 3: Index Generator Training Process. Each training iteration of the index generator
has 2 main phases: the data collection phase and the policy training phase. Expression
samples are generated during the data collection phase by a generative model that guides
MCTS. The model is improved by using the generated samples to train the policy network
during the policy training phase.

3.1.2 RL Training Process

First, the agent’s policy network is pretrained to generate valid expressions as output. The
specifics of this pretraining can be found in Appendix ??. The training process that follows
requires as input a set of multispectral images, with segmentation masks for each image.
Each iteration of the training process is performed in two phases: (1) Data Collection and
(2) Policy training. Figure 3 shows the flow of steps in each phase and iteration, and the
paragraphs below discuss this further.

Data Collection Phase. Each iteration uses MCTS to generate a probability distribution
over the actions based on the simulated return observed for each action. This probability dis-
tribution is then used to sample the next action to be taken by the environment. If the action
results in the termination of the episode (in other words, if the last action is the “=” symbol),
then the expression and its training reward (as described in Section 3.1.1) are passed into the
data buffer. Otherwise, if the episode continues, the state is passed into MCTS for simula-
tion. Each iteration of the data collection phase generates several expressions. The number
of generated expressions is a tunable hyperparameter (we use 10 for our experiments). The
generated expressions are stored in a data buffer. Of the stored expressions, the expressions
that yielded a high reward are passed for training.

Policy Training Phase. In the policy training phase, the policy network, which follows
a GPT-based model architecture (the model configuration is available in Appendix ??), is
trained to generate useful expressions. In other words, given the current state, we train the
model to generate the next symbol. With each iteration, the model learns to generate better-
performing expressions. Subsequently, the MCTS exploration improves. This is because
MCTS only explores a limited number of branches, and the exploration thereafter is simu-
lated using the symbols generated by the model. A better-performing policy network can
explore higher-reward expressions without the guidance of MCTS.
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3.2 Index Evaluator
The index evaluator uses the generated expression to create a single-channel image that we
refer to as the evaluated index. This is obtained by performing pixel-wise operations across
the channels based on the expression.

For example, say the chosen expression is c0× c1 =. To evaluate this expression, for
each image, we perform an element-wise multiplication between the pixels of the channel at
index 0 and those at index 1.

3.3 Dataset Updater
We explore two main techniques by which the dataset can be updated using the evaluated
index.

Concatenation. The first integration mode simply concatenates each evaluated index with
its respective source image. So, given a 10-channel image, the concatenation would result in
an 11-channel image.
Replacement. The second technique is to replace a channel with an evaluated index. The
evaluated index is only substituted with channels that appear within the expression to avoid
the loss of information.

Based on the above two techniques, we define four modes: Single-index Concatena-
tion (C), Multiple-index Concatenation (CM), Single-index Replacement (R), and Multiple-
index Replacement (RM). Each mode is empirically evaluated in Section 4.4. The best
updating mode for a given dataset is determined by observing the validation accuracy of
each mode.

4 Experiments
Datasets. Due to the absence of previously created few-shot multispectral segmentation
datasets, we explore the performance of the proposed approach across several multispectral
datasets, MFNet [14], Sentinel-2 Cloud Mask Catalogue [12], Landslide4Sense [13], and
RIT-18 [18]. For MFNet and RIT-18, which are multiclass segmentation datasets, we eval-
uate our approach on selected classes (car, person, and bike on MFNet; grass and sand on
RIT-18). The datasets containing samples of each class are treated as individual datasets
during experimentation. Accordingly, the final set of datasets consists of car, person, bike,
cloud, landslide, grass, and sand. To accommodate a few-shot context, we chose to randomly
sample 50 data points from each dataset. These 50 data points are split into train, validation,
and test in the frequencies of 20, 10, and 20, respectively, with each image being of shape
Nchannels ×256×256.

4.1 Index Generation Experimental Details
Reward Heuristic Comparison. As mentioned in Section 3.1.1, we evaluate the perfor-
mance of several heuristic functions to estimate the segmentation performance for a given
expression. We sample 200 randomly generated expressions and each sampled expression
is assigned a score by obtaining the actual segmentation performance (IoU) through training
on the training sets of the MFNet datasets. Next, we calculate the heuristic scores for each of
the expressions as defined by equation 4. Finally, we perform a correlation analysis between
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Dataset UNet DeepLabV3 UNet++
Baseline Ours Baseline Ours Baseline Ours

car 62.5 67.4 (RM) 55.4 58.2 (RM) 74.8 74.8 (CM)
person 46.4 48.4 (RM) 17.9 25.2 (RM) 47.3 48.5 (R)
bike 37.8 39.8 (RM) 31.1 53.5 (RM) 40.3 36.4 (R)
cloud 80.6 83.3 (RM) 62.0 65.6 (R) 82.3 84.2 (RM)
landslide 38.0 43.1 (RM) 18.7 20.5 (R) 35.9 42.8 (RM)
grass 58.0 73.7 (RM) 66.6 65.6 (R) 60.9 70.3 (RM)
sand 13.1 59.4 (RM) 12.6 41.3 (RM) 25.2 69.2 (RM)

Table 1: Overall Results. The table compares the IoU scores of the baseline model against
that of the best dataset updating mode for each dataset class when trained on each model.
(See Section 3.3)

the scores of each heuristic function and the scores obtained through training, by calculating
the t-statistic.

Based on this analysis (see Appendix Table ??), we observe that for the evaluated dataset,
only the Pearson correlation (PCC) shows a statistically significant correlation with the train-
ing performance, at a significance level of 0.05. Thus, the PCC is used as the reward heuristic
to evaluate each branch of the MCTS.

Index Selection. As stated in Section 3.1.2, the data buffer used in the RL algorithm con-
tains the best-performing expressions at any given time. After allowing the RL algorithm
to explore for a satisfactory amount of time, we choose the two best expressions for the
segmentation experiments.

4.2 Segmentation Experimental Details

We evaluate the performance of the proposed approach on three segmentation model archi-
tectures, UNet [25], UNet++ [34], and DeepLabV3 [6]. For each model, we use a ResNet50
model [15] pretrained on ImageNet [10] as the encoder. During training, all but the decoder
of the model is frozen. We use the AdamW optimizer [20] with beta coefficients of 0.9 and
0.999, epsilon of 1e-8, and a weight decay of 1e-2. Each model is trained with learning
rates of 1e-3 and 1e-4. The models undergo early stopping with 1000 epochs of patience by
monitoring the validation loss. The trained models are then evaluated on the test set to ob-
tain the final performances. We keep all the above factors the same when comparing against
the baseline, the only difference being that the dataset fed into the baseline has not been
integrated with a remote sensing index using a dataset updating mode.

4.3 Overall Results

We compare the performance of the overall method against each baseline model and
dataset (Table 1). While the proposed method results in a significant improvement in UNet,
it can be observed that this advantage decreases slightly with increasing model size. We
hypothesize that bigger models depend relatively less on the input representations. A quali-
tative analysis of the results on UNet can be found in Appendix ??.
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Dataset UNet UNet++
B C CM R RM B C CM R RM

car 62.5 63.0 61.1 65.0 67.4 74.8 72.0 74.8 60.6 71.2
person 46.4 41.8 47.0 45.1 48.4 47.3 51.2 53.5 48.5 45.1
bike 37.8 29.3 37.4 37.0 39.8 40.3 38.6 43.0 36.4 33.7
cloud 80.6 82.7 82.0 79.9 83.3 82.3 83.0 81.9 83.9 84.2
landslide 38.0 36.7 37.1 33.7 43.1 35.9 36.8 33.5 34.3 42.8
grass 58.0 61.7 63.3 73.6 73.7 60.9 61.7 60.4 73.6 70.3
sand 13.1 12.3 11.5 44.3 59.4 25.2 25.2 37.8 62.8 69.2

Table 2: Effects of Dataset Updating Mode. The table compares the IoU scores of the
baseline model against each updating mode. While RM can be thought of as a safe updating
mode in most cases, it seems to be of more benefit to smaller models (UNet) in contrast to
larger models (UNet++).

Size UNet UNet++ Mean
B RM B RM increase

1 22.4 35.0 22.1 36.1 +13.3
5 30.3 38.8 33.5 41.6 +8.3
20 38.0 43.1 35.9 42.8 +6.0
40 40.6 47.9 41.1 50.8 +8.5
80 47.4 50.0 46.5 48.2 +2.2
160 49.9 52.7 49.5 50.5 +1.9

Table 3: Effects at Different Training Set Sizes. The table shows the comparison between
the IoU scores of the multiple-index replacement method (RM) and the baseline (B) across
training samples of different sizes from the Landslide4Sense dataset [13].

4.4 Ablation Studies

Effects of Dataset Updating Mode. We evaluate the effects of the different dataset up-
dating modes discussed in Section 3.3 across all seven datasets and three models of interest
(Table 2). It can be observed that in most cases, updating the dataset through some mode
leads to an improvement in performance. As for which mode to use for updating in practice,
RM is shown to be a safe first choice to evaluate with. However, this advantage seems to be
less dominant in the case of UNet++. We hypothesize that the larger model size of UNet++
makes it less dependent on the input representations. A performance comparison of updating
the grass dataset using NDVI as opposed to the generated index can be found in Appendix
??.

Effects at Different Training Set Sizes. We evaluate the effects of the proposed method-
ology when the training set size is 1, 5, 20, 40, 80, or 160 samples (Table 3). The Land-
slide4Sense [13] is chosen for this evaluation due to the relatively lower performance scores
across all experiments, the reason being that it leaves more room for improvement. Using
Multiple-Index Replacement (RM) as the choice of the dataset updating mode, it can be
observed that while the overall performance improves with increasing training set size, the
benefits of using the indices tend to be higher for smaller training set sizes. We hypothe-
size that this is because the indices provide a more generalizable representation that may be
lacking in smaller training sets.
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Dataset UNet UNet++ MSNet CAINet
B RM B RM B RM B RM

MFNet 79.6 81.2 77.7 79.3 78.8 79.5 85.1 85.8
RIT-18 66.6 67.5 83.1 85.3 70.8 78.9 58.3 82.4

Table 4: Effects of Generated Indices on Multiclass Segmentation. The table compares
the IoU scores of the multiple-index replacement method (RM) and the baseline (B) across
two multiclass segmentation datasets and four segmentation model architectures (two regular
segmentation architectures: UNet [25], UNet++ [34], and two multispectral segmentation
architectures: MSNet [28], CAINet [21]).

Effects of Generated Indices on Multiclass Segmentation. We evaluate how an index
generated for a specific class can affect the performance of multiclass segmentation. We
perform this evaluation on the MFNet dataset [14] and the RIT-18 dataset [18] by comparing
the baseline training performance (B) against the performance observed through Multiple-
Index Replacement (RM). For RM, we use the indices generated for the "car" class to update
the MFNet dataset and those generated for the "grass" class to update the RIT-18 dataset.
The results, as shown in Table 4, demonstrate that the indices contribute to the overall seg-
mentation performance in the multiclass context as well. In addition, it should be noted
that even models developed for the RGB-T context (such as CAINet [21]) not only seem to
gain performance improvements under the proposed method but also demonstrate potential
in supporting other contexts (as with the RIT-18 dataset).

5 Conclusion

In this paper, we presented an approach for improving few-shot multispectral segmentation
performance. We achieve this by using reinforcement learning on a few labeled samples
to generate expressions that define data augmentations. Each generated expression is used
to augment each input image into a single-channel image (a.k.a. an evaluated index). The
results demonstrate that replacing multiple channels of the input image with such evaluated
indices from multiple expressions tends to lead to the best performance improvement.

The proposed algorithm is, however, limited by the amount of time it takes to gener-
ate a suitable index. Despite this limitation, once an index is generated, it can be used for
any subsequent task pertaining to the dataset. Additionally, the current reward function is
primarily targeted for binary segmentation. However, we demonstrate that multiclass seg-
mentation can still benefit from the generated indices (Table 4). Future work can explore
reward functions that directly target multiclass segmentation and the cross-compatibility of
the generated expressions with other computer vision tasks such as image classification and
object detection. Furthermore, in addition to the context of computer vision, the proposed
RL formulation may also be used in traditional machine learning contexts to perform feature
engineering and feature extraction to maximize performance.
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A Implementation Details

A.1 Adaptations
Pretraining for valid output generation. Each iteration of MCTS spends a non-negligible
amount of time evaluating the expression. Since the expression validity can be evaluated with
a (1,1,nchannels)-shaped tensor, the expression evaluation time can be significantly reduced
during the pretraining stage. As a result, the model can learn to generate valid expressions
much faster. This also gives the added benefit of providing a pretrained model to initialize
weights for a new task, assuming the new task works with the same number of channels.

During the pretraining phase, certain tendencies are observed in the behavior of the agent.
Firstly, the agent often generates short expressions. This may be because the more complex
the expression, the easier it is to deviate from a regular range of values. Secondly, the
agent tends to avoid opening parentheses. This is likely caused by the fact that once an
opening parenthesis is generated, the expression remains invalid until a closing parenthesis
is generated and this leads to a higher chance of negative rewards.

It is also observed that a significant fraction of existing remote-sensing indices is "unit-
less". In other words, if each channel of the multispectral image is given a unit of measure-
ment, the spectral index resulting from a mathematical operation between those bands lacks
a unit.

Accordingly, to motivate the agent to address the aforementioned considerations, the
reward for pretraining r(s) is defined as presented in equation 4.

rlen = 0.02× lexp (1)
rpar = 0.2×npar (2)

runit =

{
1, if expression is unitless
0, otherwise

(3)

r(s) = 0.5+ rlen + rpar + runit (4)

where lexp is the length of the expression and npar is the number of pairs of parentheses
in the expression.

© 2024. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Previous Action Valid Actions
start,(,+,−,×,/ (,channel
channel,) +,−,×,/,),=

Table 1: The list of valid actions, given the previous action, where start refers to the starting
state (empty expression) and channel refers to a channel of the image.

Action validity. At each state, we define a set of valid actions based on the previous action
as shown in Table 1. In addition, certain other checks are performed to avoid invalidity and
redundancy where possible.

• The number of “)” symbols in the expression is always maintained to be less than or
equal to the number of “(“ symbols in the expression. In other words, generating the
“)” symbol is defined to be invalid if all opened parentheses have already been closed.

• Since enclosing a single symbol within parentheses is redundant as the parentheses
can simply be removed, generating a closing parenthesis, two actions after generating
an opening parenthesis, is defined to be an invalid action.

Adaptive Data Buffer. The classification of expressions as high-reward or low-reward
can be achieved by various criteria. For the experiments performed in this research, this
classification is performed by using an adaptive data buffer. The idea is to progressively
reduce the size of the data buffer to get the GPT-based model to overfit to a set of expressions
that provide a higher reward. We chose to implement this functionality as follows. The data
collection phase is initially executed until the buffer reaches a certain capacity. The iterations
that follow execute both the data collection phase and training phase. After each iteration,
the buffer size is set to 95% of its current capacity, dropping the expressions within the 5% of
lowest rewards. This is repeated until a certain minimum capacity is reached. This minimum
capacity would be a relatively low number (e.g.: 20), such that the model may overfit to those
expressions while also exploring expressions that contain similar symbols and structures.

A.2 Evaluated Index Preprocessing

Prior to being used in reward calculation, the evaluated index is updated by standardizing,
clipping, and scaling to a [0, 1] range (Eq. 5 - 7).

standardize(E) = E −µE
σE

(5)

clip(E) = max{min{E ,Zmax},Zmin} (6)

scale(E) = E −Zmin

Zmax −Zmin
(7)

where E is the evaluated index, µE and σE are the channel-wise means and standard devia-
tions of E , and Zmin and Zmax are the minimum and maximum Z-scores permitted. We use
Zmin =−3 and Zmax = 3 in our experiments.
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Function Correlation t-statistic p-value
IoU 0.0554 0.7807 0.4359
CS 0.0599 0.8444 0.3995
F1 0.0667 0.9406 0.3481
AUC 0.0776 1.0952 0.2748
PCC 0.1417 2.0142 0.0453

Table 2: A statistical comparison of the correlations of each heuristic function with the
training score

Size Baseline NDVI Generated
R RM R RM

UNet 58.0 74.0 73.6 73.6 73.7
UNet++ 60.9 70.2 72.4 73.6 70.3

Table 3: Effects of Generated Indices versus Existing Indices. The table shows the com-
parison between the IoU scores of the multiple-index replacement method (RM) and the
single-index replacement method (R) for the NDVI index and the index generated by the
proposed method for the Grass class of the RIT-18 dataset.

A.3 GPT-based Model Configurations
A.3.1 Model Architecture

Number of layers = 4
Number of attention heads = 4
Embedding size = 128
Dropout = 0.0

A.3.2 Adam Optimizer

Learning rate = 1e−4
Weight decay = 0.1
Beta1 = 0.9
Beta2 = 0.95

B Additional Experiments

B.1 Qualitative Comparison
We perform a qualitative comparison between the baseline (B) model and the multi-index
replacement (RM) mode (Figure 1). Through the comparison, we observe that the RM mode
tends to be relatively less confused by objects that blend into the background in terms of
color.

B.2 Effects of Generated Indices versus Existing Indices.
To evaluate the performance of the generated indices in comparison to pre-existing indices,
we compare NDVI to the expression for the Grass class of the RIT-18 dataset. We choose
this setting due to the specific use of NDVI in the identification of greenery in prior work.
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Image

GT

B

RM (Ours)

Car Person Bike Cloud Landslide Grass Sand

Figure 1: Qualitative Comparison between the baseline result (B) and Multi-index replace-
ment (RM) across the datasets with the UNet model, along with the ground truth (GT).

Despite the NDVI index being specifically created for this context, we observer comparable
results when using the generated indices

C Code
Please note that the codebase for the project is available in the supplementary material in the
code.zip file. The README.md file within the codebase provides instructions on how to
set up the workspace, download the dataset, and execute the algorithms.

Once the dataset is downloaded and extracted, the resulting directory structure is ex-
pected to look as follows:

./
|- dataset/
|- indexrl/
|_ dataset.py
|_ dataset_config.py
|_ ...


