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Abstract

In this paper, we address the challenge of generating
novel views of real-world objects with limited multi-view
images through our proposed approach, FewShotNeRF.
Our method utilizes meta-learning to acquire an optimal
initialization, facilitating rapid adaptation of a Neural Ra-
diance Field (NeRF) to specific scenes. The focus of our
meta-learning process is on capturing shared geometry and
textures within a category, embedded in the weight initial-
ization. This approach expedites the learning process of
NeRFs and leverages recent advancements in positional en-
codings to reduce the time required for fitting a NeRF to a
scene, thereby accelerating the inner loop optimization of
meta-learning. Notably, our method enables meta-learning
on a large number of 3D scenes to establish a robust 3D
prior for various categories. Through extensive evaluations
on the Common Objects in 3D open source dataset[27], we
empirically demonstrate the efficacy and potential of meta-
learning in generating high-quality novel views of objects.

1. Introduction

Neural radiance fields (NeRF) [19] have emerged as a trans-
formative technology in the realm of novel view synthe-
sis [15, 29, 42], particularly in the context of posed mul-
tiview images. This advancement is attributed to the uti-
lization of a coordinate-based representation [18, 22, 30],
wherein a three-dimensional coordinate system is effi-
ciently mapped to its corresponding color and density [19].
By adopting this approach, the representation of a three-
dimensional scene becomes more compact and memory-
efficient [7, 8, 32]. However, it is important to acknowledge
that this enhancement comes at the expense of increased
computational costs [19, 20].

*Equal contribution

Figure 1. FewShot-NeRF: Learning Rich 3D Scenes from Mini-
mal Camera Poses. Conventional NeRF training demands nearly
100 camera poses per scene. Our approach reduces this require-
ment by harnessing meta-learning to acquire an optimized initial-
ization for NeRF. By incorporating a 3D prior into the parameter
initialization, FewShot-NeRF learns a 3D scene with a minimal set
of camera poses, effectively reducing frame requirements

To construct a NeRF capable of generating novel views,
each scene necessitates the initialization of a new model
from scratch, followed by training via volume render-
ing [13] using 2D supervision provided in the form of multi-
view images. Nonetheless, the efficacy of this approach
is subject to certain limitations [38]. Firstly, it relies on
large datasets containing hundreds of images capturing a
single scene, which may pose challenges in terms of data
acquisition and storage [42]. Additionally, the computa-
tional demands associated with this methodology may be
restrictive and require substantial computing resources [20].
Thus, while neural radiance fields offer considerable bene-
fits in terms of compact representation and memory effi-
ciency, their practical implementation is hindered by the re-
liance on extensive datasets and the computational burdens
they entail.

As researchers delved into the realm of Neural Radiance
Fields (NeRFs), they recognized the importance of address-
ing the challenge of generalization [31, 42, 44]. Several
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studies have emerged, each attempting to tackle this issue
from various angles. The key idea behind these attempts
is to incorporate prior knowledge about the world into the
initial NeRF models, enabling the learning of scene repre-
sentations from a few views.

To inject these models with this prior knowledge, re-
searchers have explored three main approaches [42]. The
first involves conditioning the NeRF model on a latent
code [4, 44], while the second entails learning a prior ini-
tialization [31, 38] that facilitates rapid convergence to a
scene with limited views. The third way is to use diffusion
generative models to generate views and use them to train a
NeRF[45]. However, it is worth noting that models condi-
tioned on a latent code may suffer from limited expressivity
due to the constraints imposed by the code’s size [42]. That
means, once developed, the restriction caused by the latent
code will remain as a constraint. Diffusion-based methods
rely on a 2D prior. On the other hand, gradient-based meta-
learning approaches inherently maintain the full expressiv-
ity of NeRF models, thereby enabling the representation
of any scene that can be captured by per-scene optimized
NeRF models. The prior knowledge learned is inherently
3D.

The first work investigated the usage of gradient-based
meta-learning is [38], specifically using Model-Agnostic
Meta-Learning(MAML) [9] framework, to learn improved
initializations for NeRFs. However, their study focused on
a simplified version of NeRF that lacks view dependence,
and the generalization achieved by their method was limited
to three specific categories on a synthetic dataset [3]. This
limitation stems from the inefficient training of the vanilla
NeRF and is further exacerbated by the memory require-
ments of the meta-learning process.

In contrast, our work aims to apply gradient-based meta-
learning to NeRFs that incorporate view-dependent color
output, with the objective of achieving generalization in
many categories of commonly used objects. Moreover, our
goal extends beyond synthetic datasets and encompasses the
real-world objects shot on mobile phones [27]. By explor-
ing these avenues, we seek to enhance the flexibility and
adaptability of NeRF models for a wider range of scenes
and categories.

Significant modifications have been made to the archi-
tecture of NeRFs to enhance their efficiency [17, 20, 28].
One crucial aspect of NeRFs is the need for an encoding
function [19, 37] that maps the three-dimensional coordi-
nate vectors to a higher-dimensional space to mitigate spec-
tral bias[23].

The original NeRF [19] architecture employed positional
encodings inspired by Transformer [40] models to fulfill
this requirement. However, recent studies have demon-
strated that replacing these encoding functions with task-
specific, learnable data structures can improve training effi-

ciency and facilitate faster convergence. For example, [16]
and [36] have presented approaches that utilize modified en-
coding functions, resulting in accelerated training and con-
vergence. These modifications have been shown to be ben-
eficial in terms of computational efficiency.

Additionally, [20] proposed a multi-resolution hash en-
coding function that drastically reduced the training time
required for NeRF convergence by several orders of mag-
nitude. This advancement, coupled with improvements in
ray tracing algorithms and efficient implementation tech-
niques, contributed to overall efficiency enhancements in
NeRF models. Notably, the introduction of the hash encod-
ing function ensured convergence with a significantly lower
number of iterations, further optimizing the training pro-
cess.

Motivated by the aforementioned findings in the existing
literature, our paper aims to make three significant contri-
butions:
1. First, we propose the utilization of hash encoding as a

way to accelerate the meta-learning process. This in-
creases the feasibility of meta-learning on a large num-
ber of scenes.

2. To evaluate the effectiveness of our proposed method,
we conduct extensive experiments on categories of real-
world objects. By employing a diverse set of object cate-
gories, we can assess the performance and generalization
capabilities of our approach in a realistic and practical
context.

3. We investigate the efficacy of meta-learning in acquir-
ing a 3D prior and explore its potential for generating
novel views independently, without reliance on external
2D priors.

2. Related Work

Neural Fields/Implicit Neural Representation

Implicit Neural Representations are computational models
that establish a mapping between input coordinates and sig-
nal values, enabling the encoding of 2D or 3D scenes within
coordinate networks. These networks have found extensive
applications in various visual learning tasks, including im-
age representation [5, 34], 3D scene reconstruction from
2D images [18, 22], imaging inverse problems [35], and
multi-view synthesis [19]. These neural networks exhibit
a bias towards low spatial frequency functions. In order to
address this spectral bias inherent in neural networks, [23]
proposes a solution that leverages Fourier analysis to cap-
ture higher frequency functions. Another technique called
positional embedding, initially employed in Natural Lan-
guage Processing[6], has been adopted to map input coordi-
nate vectors into embedded coordinated vectors. Sinusoidal
embedding [40] and Fourier features, in conjunction with
positional embedding, have been widely utilized in neural



fields to capture higher frequency signals [37]. [32] intro-
duces a method that replaces monotonic non-linearities with
periodic nonlinearities to achieve this objective.

Novel View Synthesis

Novel View Synthesis(NVS) pertains to the generation of a
new viewpoint of a scene based on a given set of input cam-
era images captured from various poses. Earlier approaches
in the field, as discussed in [1], were capable of produc-
ing photorealistic views; however, they heavily relied on
densely captured images. Recent advancements, as high-
lighted in [19] and [16], have made significant progress in
novel view synthesis by utilizing 3D representations within
neural networks, requiring fewer input images. Neverthe-
less, these methods necessitate multiple camera views for
a single scene to fit a particular model, resulting in lengthy
training times. Furthermore, a distinct model optimization
process is required for each scene [12, 44].

To address the computational cost, a recent work by
Muller et al. [20] introduced an innovative approach capa-
ble of training a model within a few minutes. Additionally,
concurrent research efforts [43] have also aimed to enhance
both training time and accuracy. In this study, we investi-
gate novel view synthesis using a limited number of training
samples, utilizing the approach presented in [20] as our base
model.

Meta Learning

Meta-learning [41] is a machine-learning paradigm that
involves pre-training a model to acquire the ability to
learn efficiently. Notably, Model Agnostic Meta-Learning
(MAML) [9] and Reptile [21] are optimization-based al-
gorithms commonly used in meta-learning. In addition to
these, there exist other variants of meta-learning algorithms,
such as those described in [2, 24–26]. Gradient-based
meta-learning employs outer loops of Stochastic Gradient
Descent (SGD) to learn an improved initialization, enabling
fast convergence when faced with new instances of the same
task during testing [9]. Specifically, this approach has been
applied to tasks related to neural representation, such as
effectively fitting tasks to represent signed distance fields
[22], with [39] introducing the concept of learned initial-
ization as the first work to address gradient-based meta-
learning for Neural Radiance Fields (NeRFs). However,
their experiments were constrained to simplified NeRF ar-
chitectures and evaluation settings.

Another approach within the realm of meta-learning in-
volves learning a hyper network as a prior for model initial-
ization. Hypernetworks [10] refer to neural networks that
produce weights for another neural network. Several stud-
ies have utilized hyper networks to estimate weights for im-
plicit neural networks [5, 33]. However, these early works
focused solely on developing models with 2-dimensional

output or models with 3D supervision.
A recent proposal [4] suggests employing a transformer

as a hyper network, drawing inspiration from the similari-
ties between gradient-based meta-learning and the residual
connections found in transformers. In our research, our ob-
jective is to apply meta-learning to learn the initialization of
view-dependent NeRFs, and subsequently evaluate its per-
formance in a challenging setting that has not been exten-
sively explored before.

3. Method
Reconstructing a scene in 3D faithfully requires lots of
multi-view images. Given enough multi-view images
NeRF [19] and other multi-view reconstruction methods
can reconstruct the scene with reliable 3D shapes and tex-
ture. Essentially, more views add more constraints to the
optimization problem, thus creating a faithful reconstruc-
tion of the real scene. However, if we have very few images
of a scene, for example, if we have only one side view of
a car, then we need to rely on some additional information
such as cars are usually symmetric to get some estimates
of the 3D shape. Therefore, the lesser the number of views
we have, we need to rely on the additional priors about the
world to solve this under-constrained problem.

In this work, we operate on a limited number of views
(eg 2-6 views). This requires learning additional priors
about the world, such as symmetries, smooth surfaces and
even sometimes man-made priors like objects are usually
rectangular, etc. For example, apples have a solid shape
prior almost all of them are sphere-shaped, and plants for
example share some priors on the texture, most of the leaves
are usually green. This extra knowledge about the world
can be enforced by allowing the model to only render a
scene that lies on the manifold of real images. This explic-
itly adds more constraint to the texture of the underlying
3D shape thus, reducing the plausible reconstructions. The
same can be applied for 3D shape priors, with points clouds.
On the other hand, in this work, we propose FewShotNeRF
to learn additional priors implicitly from the weights of the
NeRF model. Our method heavily relies on the understand-
ing of NeRF and Metalearning, and we briefly discuss these
two ideas next.
Neural Radiance Fields (NeRF): NeRFs synthesis real-
istic 3D scenes by directly learning volumetric represen-
tations from 2D images. Unlike traditional methods such
as point clouds or meshes, NeRF excels at capturing fine
details and complex occlusions. NeRF employs a neu-
ral network, specifically a multi-layer perceptron (MLP),
to approximate the volumetric scene representation. This
network maps 3D coordinates to radiance values, yielding
highly realistic scene synthesis. To render images from
NeRF, it employs ray marching casting rays from a virtual
camera and integrating radiance values along the ray’s path.



Figure 2. Method Overview: (Left) Our approach is rooted in the concept of meta-learning for initialization. We dynamically adjust the
initialization by shifting it closer to the optimal parameters derived from NeRFs fitted to various scenes within the same category. This
update leverages an extensive range of category-related scenes to imbue geometric resemblances into the initialization. (Center) During
testing, we employ 2 to 6 images from distinct viewpoints, initiating NeRF fitting with the learned initialization. (Right) The resulting
NeRF model facilitates the synthesis of novel views for the depicted scene.

NeRF’s training requires a dataset with 2D images and cam-
era poses. Through differentiable rendering and gradient
descent, it optimizes MLP parameters by minimizing dif-
ferences between rendered and ground truth images.
Meta Learning: Its objectives are effective adaptation and
generalization. Here models are trained to adapt quickly
to a task such that newer tasks can be solved with limited
resources. Tasks within Meta Learning are typically struc-
tured within a task distribution or ”meta-dataset.” Individual
tasks represent distinct learning problems, while the meta-
dataset spans a range of tasks, facilitating the acquisition of
transferable knowledge.

Meta-Learning Algorithms

In our study, we conducted a comprehensive evaluation of
three prominent meta-learning algorithms, namely Reptile,
First Order MAML, and Second Order MAML. Each al-
gorithm was assessed based on multiple criteria, including
computational efficiency, memory consumption, and meta-
training adaptation steps. Through this systematic evalua-
tion, we aimed to identify the most suitable algorithm for
our task.
Reptile: Reptile emerged as a compelling choice due to its
favorable computational cost and efficient training process.
It demonstrated remarkable performance in scenarios with
a large number of meta-training adaptation steps (200). Ad-
ditionally, Reptile exhibited fast convergence and required
relatively less memory consumption, making it well-suited

for our experimental setup. However, it’s important to note
that Reptile’s performance might plateau with a limited
number of adaptation steps, leading to the need for a larger
step count to achieve optimal results.

θ′ = θ + α(θ′meta − θ) (1)

Here, θ represents the initial model parameters, θ′meta
is the meta-learned model parameters, and α is the meta-
learning rate.
First Order MAML: First Order MAML exhibited com-
petitive performance, sharing similarities with Reptile in
terms of the number of meta-training steps required for
adaptation. However, one notable distinction was its higher
memory consumption, which could impact its scalability
for larger datasets or more complex tasks. While it of-
fered comparable results, the increased memory require-
ments might limit its practical utility in certain scenarios.

θ′ = θ − α∇θLmeta-train(fθ) (2)

Here, ∇θ denotes the gradient with respect to the
model parameters θ, and Lmeta-train(fθ) represents the meta-
training loss of the model fθ.
Second Order MAML: Second Order MAML demon-
strated a unique profile, showcasing the potential for achiev-
ing comparable outcomes with a relatively low number
of meta-training adaptation steps (10). However, its util-
ity was offset by very high memory consumption, which



could hinder its applicability in resource-constrained envi-
ronments. Despite its capacity to achieve competitive re-
sults, the trade-off between memory usage and performance
improvement should be carefully considered.

θ′ = θ − α(∇θLmeta-train(fθ) + β∇2
θLmeta-train(fθ)) (3)

In this equation, β represents the second-order meta-
learning rate, and ∇2

θ denotes the Hessian matrix (second-
order gradient) with respect to the model parameters θ.

FewShotNeRF

We formally define our problem as follows: we consider
a set of images denoted as I = {I1, I2, ..., In} along with
their corresponding poses P = {P1, P2, ..., Pn}. Addition-
ally, we have a fixed budget of m optimization steps allo-
cated for a specific scene S. It is important to note that the
size of I is limited to 2-6 images depending on the setup
(2 ≤ n ≤ 6). We aim to learn a function fθ that can be
utilized to generate a new image set I′ using their corre-
sponding poses P′. Importantly, there should be no overlap
between the poses in P and P′, denoted by P ∩ P′ = Φ.
The function fθ follows the same architecture as described
in NeRF [19], and the generated images are produced ac-
cordingly. The objective of training fθ is to ensure that
the generated image set I′ matches the ground truth images
I′gt for the corresponding poses. Here, I′gt represents the
ground truth images for the given poses P′. From the set
of scenes, first, we sample a random k number of scenes
{S1,S2, ...Sk}. For each scene in the randomly sampled
set, we learn a NeRF optimization in the inner loop.

θij = NeRF (Sj , θ
i) (4)

Here, θij is the optimized parameters of the MLP, for the
scene Sj , where the optimization is initialized with the pa-
rameters θi at ith meta-learning iterations. This process de-
fines the inner loop optimization of the meta-learning al-
gorithm, and here the inner loop is equivalent to the NeRF
optimization. For the outer loop optimization, we use Rep-
tile [21] as our main meta-learning algorithm, and we abi-
late performance of FewShotNeRF when optimizing with
MAML [9] and FOMAML [9]. After optimizing the task-
specific parameters in the inner loop, we update the meta-
parameters in the out loop using a simple weighted sum of
inner loop gradients as shown in Fig 2.

θi+1 = θi − α

k∑
j=1

(θij − θi) (5)

Here,i is the number of meta-learning iterations. α is the
learning rate of the meta-learning algorithm. We train the
meta parameters for over a few hundred iterations and then

at test time given a few views of a novel scene, we apply
inner loop optimization (NeRF) to the meta initialized pa-
rameters θ and then render novel views using the inner-loop
optimized parameters.

4. Experiments
We conducted a comprehensive evaluation of our approach
using the publicly available CO3D dataset [27], which en-
compasses real-world multi-view objects. To assess the
effectiveness of our method in addressing the challenge
of generalizing Neural Radiance Fields (NeRFs), we per-
formed a comparative analysis against existing techniques.
Our evaluation encompassed diverse scenarios character-
ized by different quantities of input views employed for
NeRF generation, specifically utilizing 2, 3, and 6 input
frames in our experimental setups.

4.1. Setup

Dataset: We subjected our method to evaluation using the
CO3D dataset [27]. It has different scenes belonging to 50
categories of commonly used objects. The frames are taken
from mobile phone videos. We select only 10 core cat-
egories following [45] to perform our experiments. This
dataset provides essential components, including relative
camera poses for each frame and masks that delineate the
object of interest from the background. Our selection of
this dataset was motivated by the aim to investigate the ef-
ficacy of meta-learning in accelerating the learning process
of Neural Radiance Fields (NeRF) within real-world scenes.
This contrasts with the approach taken in [38], which con-
centrated on synthetic scenes characterized by a simplified
NeRF architecture.
Baselines: We conducted thorough comparisons between
our method and several existing approaches, all of which
have been suitably adapted to accommodate the CO3D
dataset as presented in [45].

Given the category-specific nature of our method, we
conducted comparisons against a tailored category-specific
version of Pixel-NerF [44]. This variant leverages pixel-
wise image feature re-projection of CNN features to achieve
its results. In addition, we evaluated our method against
NerFormer [27] which is based on the feature-reprojection
technique and ViewFormer [14] which is based on autore-
gressive generation.

Furthermore, we assessed the performance of our
method against the state-of-the-art approach, Sparsefu-
sion [45]. This method employs a diffusion-based prior
to address data scarcity issues effectively. Through these
comparisons, we demonstrated the distinct strengths and ca-
pabilities of our approach within the context of the CO3D
dataset.
Implementation Details: We used a PyTorch implementa-
tion of Instant NGP [20] as our backbone model. We ren-



Donut Apple Hydrant Vase Cake Ball Bench Suitcase Teddybear Plant

PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑ PSNR ↑
PixelNeRF[44] 20.9 20.0 19.0 21.3 18.3 18.5 17.7 21.7 18.5 19.3
NeRFormer[27] 20.3 19.5 18.2 17.7 16.9 16.8 15.9 20.0 15.8 17.8
ViewFormer[14] 19.3 20.1 17.5 20.4 17.3 18.3 16.4 21.0 15.5 17.8
EFT[45] 21.5 22.0 21.6 21.1 19.9 21.4 17.8 23.0 19.8 20.4
VLDM[45] 20.1 21.3 20.1 20.2 18.9 20.3 16.6 21.3 17.9 18.9
SparseFusion[45] 22.8 22.8 22.3 22.8 20.8 22.4 16.7 22.2 20.6 20.0
FewShotNeRF(25%) 23.9 23.2 22.6 24.2 22.4 22.5 19.9 24.7 20.9 21.3
FewShotNeRF(50%) 22.6 22.2 21.7 22.3 20.8 21.0 18.5 23.0 19.4 20.5
FewShotNeRF(75%) 21.7 21.3 21.0 20.8 19.6 19.9 17.4 21.7 18.3 19.3
FewShotNeRF(100%) 20.5 20.1 20.2 19.2 18.2 18.8 16.3 20.3 17.0 18.1

Table 1. Results on the CO3D dataset comparing our method with baselines on categories Donut, Apple, Hydrant, Vase, Cake, Ball,
Bench, Suitcase, Teddybear, and Plant. Our method outperforms most of the methods and seems to show competitive performance to
the SparseFusion, while not relying on any external models. To provide a nuanced understanding of our method’s performance, we went
beyond conventional averaging techniques. Unlike SparseFusion, which averages results from randomly selecting 10 scenes, we conducted
a thorough evaluation using 150 scenes. We then calculated averages for each quartile, breaking down our method’s performance at 25%,
50%, 75%, and 100% of the scenes. For the 25% quartile, we sorted the 150 scenes based on PSNR and selected the top 25%, demonstrating
the robustness of our method even when considering only the scenes with the highest quality. Moving to the 50% quartile, we continued
this process, ensuring a balanced representation of the dataset. At the 75% quartile, our evaluation included scenes that ranked within the
top three-quarters based on PSNR, providing a broader perspective on our method’s effectiveness. Finally, the 100% quartile encompassed
the entire dataset, offering a comprehensive overview of our method’s performance across the entirety of the tested scenes.

2 Views 3 Views 6 Views

PSNR ↑ SSIM ↓ PSNR ↑ SSIM ↓ PSNR ↑ SSIM ↓

PixelNeRF[44] 19.52 0.667 20.67 0.712 22.47 0.776
NerFormer[27] 17.88 0.598 18.54 0.618 19.99 0.661
ViewFormer[14] 18.37 0.697 18.91 0.704 19.72 0.717
EFT[45] 20.85 0.680 22.71 0.747 24.57 0.804
VLDM [45] 19.55 0.711 20.85 0.737 22.35 0.768
SparseFusion[45] 21.34 0.752 20.85 0.766 23.74 0.791
FewShotNeRF(25%) 22.50 0.781 23.01 0.781 25.76 0.792

Table 2. Results on the CO3D dataset with 2,3,6 views on average across all of the selected 10 categories. We compare our method
FewShotNeRF with PixelNeRF, NerFormer, SparseFusion, etc. Our experiments show that FewShotNeRF outperforms most of the com-
parisons and performs on par with SpareFusion. Note that the evaluation protocols are slightly different and our evaluation is more robust
and stronger than a random sampling of 10 scenes.
dered the images at 128 x 128 following Zhou and Tulsiani
[45] to ease the memory constraints. For meta-learning we
adopted the Reptile [21] algorithm. Our method consisted
of two main phases. The first phase is the Meta-learning
phase and the second phase is the Test time adaptation
phase. During the Meta-learning phase, We used a fixed
budget of 200 inner optimization steps to adapt the model to
a specific scene. We randomly sampled 5 scenes from the
scenes selected for meta-learning after leaving 150 scenes
for the testing phase and adapted them. The outer loop ran
through 8 steps. During the Test time adaptation phase, we
tested the method on the 150 scenes left out for testing, and
using 2,3, or 6 frames, we adapted the model for 400 in-
ner optimization steps. We evaluated the models using the
PSNR and SSIM metrics on the remaining test frames.
Meta-Learning Algorithm: We opted for the Reptile

meta-learning algorithm due to its suitability for our con-
text. Learning a NeRF involves substantial computational
demands, and incorporating memory-intensive algorithms
like the one proposed in [9] would prove impractical, espe-
cially when dealing with a large dataset. To further under-
stand that, We systematically evaluated three distinct meta-
learning algorithms, ultimately selecting Reptile based on
its favorable computational cost.

Metrics: We conduct a comparative analysis between our
method and related approaches, employing quantitative
metrics including Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM). PSNR quantifies the ab-
solute likeness between the reconstructed view and ground
truth, while SSIM evaluates the structural similarity be-
tween these views.



Meta Learning
Algorithms

Mean
(PSNR)

Standard
Deviation Variance

No of Meta
Training iterations

Reptile [21] 22.04 2.76 7.62 200
MAML First Order[9] 18.42 3.23 10.46 200
MAML Second Order[9] 18.45 3.22 10.35 10

Table 3. This table compares the performance of three meta-
learning algorithms in the Apple category. Reptile outperformed
MAML First Order with the same meta-training iterations. How-
ever, MAML Second Order achieved competitive results with sig-
nificantly fewer iterations, showcasing its efficiency. The findings
highlight MAML Second Order’s ability to achieve comparable
performance with a reduced number of meta-training steps, chal-
lenging the conventional approaches of Reptile and MAML First
Order.

4.2. Results on CO3D

This section showcases the quantitative outcomes of our ap-
proach under diverse input view scenarios. We meticulously
choose these views to align evenly along the circular trajec-
tory followed during object capture. This selection is cru-
cial as our method relies only on the input view signal and
the initialization prior, so selecting the input views evenly
spaced is pivotal in generating a coherent and realistic ob-
ject representation.

2-view Setup: Table 1 shows the comparison of our
method with the baselines in the challenging scenario of just
2 input views. PSNR values on each of the 10 selected cat-
egories are shown. We report the values taken from [45].
Zhou and Tulsiani [45] selected only 10 scenes from the se-
lected categories to test and report the values. Since the
scene ids are not provided and it is not clear how these
scenes are selected, we report the average PSNR value of
all the scenes (150 scenes for each category in the test set)
from the test split, for our method. Additionally, we also
provide different quartile values of our method to empha-
size the variation in the results. Our method performs better
than NeRFormer[27], [44] on various catagories. We can
see competitive results to [45] even without using an exter-
nal prior such as a Diffusion model[11] and our numbers
are computed over 150 scenes not random 10 scenes.

3-view Setup: Our 3-view setup is very similar to the 2-
view setting, except the only change is the model sees 3
views during the training and adoption. Compared to the
2-view setting, the 3-view setting performs better. While
this is an obvious observation in the NeRF land, this per-
formance gain in the meta-learning setting suggests that the
meta objective is able to capture strong inner-loop priors
to the outer-loop. Detailed results, representing the aver-
age outcomes across the ten designated categories, are pre-
sented in 2.

6-view Setup: Extending our experimentation to a 6-view
setup yields further improvements in the results. This pro-
gression is documented in Table 2.

4.3. Evolution of Image Quality via Meta-Training
Iterations

In our experiment, we checked how image quality improves
over several iterations of meta-training. We looked at the
Peak Signal-to-Noise Ratio (PSNR) for 10 different scenes
in each category during each round. The results showed a
clear and consistent trend. Figure 3 displayed an increase
in PSNR values with more meta-training iterations. This
indicates a continual improvement in image quality. Our
approach, which involved evaluating multiple scenes and
averaging their PSNR values, highlights the reliability of
our findings and the effectiveness of iterative meta-training
in making images better.

Figure 3. Evolution of PSNR Across Meta-Training Iterations.
This graph illustrates the progressive increase in Peak Signal-to-
Noise Ratio (PSNR) values with the number of meta-training iter-
ations. The study includes an average of 10 scenes per category,
highlighting the consistent improvement in image quality achieved
through the iterative meta-training process.

5. Discussion
In this paper, we introduce FewShotNeRF, an approach to
generalize Neural Radiance Fields (NeRFs) for view syn-
thesis with few input views. We make three significant con-
tributions through this work. First, we propose to utilize
hash encoding to accelerate the training of NeRF models in
the inner loop of meta-learning. Second, we conduct ex-
tensive experiments on real-world object categories to eval-
uate the effectiveness of this method and scale the meta-
training to over 300 scenes to distill the 3D priors into a
single model. These experiments provide valuable insights
into the feasibility and potential benefits of using hash en-
coding for meta-learning NeRF models. Finally, our pro-
posed method relies on learning 3D priors only from the
meta objective without relying on external models.

In conclusion, the presented findings have the potential
to shed light on the NeRF generalization. The utilization of
hash encoding for meta-learning initialization, along with



the extensive experimental evaluations, contributes to the
advancement of generalizable NeRFs. Future work could
further refine and extend the proposed methodology by ex-
ploring additional enhancements and could also focus on
applying FewShotNeRF to more complex and challenging
scenarios like dynamic scenes.



Figure 4. This sequence of images illustrates the qualitative progress achieved across four categories - hydrant, apple, ball, and donut.
Beginning with the training input, followed by novel views generated using only 2, 3, and 6 training images, we witness the model’s ability
to enhance realism and accuracy in novel view generation.
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Supplementary Material

5.1. Metrics

We compare our method with the baselines using the stan-
dard metrics used for Image-based comparisons. We se-
lected PSNR as a pixel-wise comparison method and SSIM
as a perceptual comparison metric. Those results are calcu-
lated as follows.

PSNR = −10 log10(MSE) (6)

Where MSE is calculated as follows

MSE =
1

w · h

w∑
i=1

h∑
j=1

(Ioriginal(i, j)− Ireconstructed(i, j))
2

(7)
Here w represents the width of the image and h repre-

sents the height of the image.
The equation we used to calculate the SSIM is as fol-

lows.

SSIM(x, y) =
(2µxµy + c1)(2σx,y + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(8)

Let x and y denote the original and reconstructed im-
ages, respectively. Furthermore, let µ and σ represent the
mean and standard deviation of pixel intensities in the im-
ages. The covariances of pixel intensities in the original and
reconstructed images are denoted by σx,y . To prevent zero-
division errors, constants c1 and c2 are introduced.

5.2. Impact of View Count on Image Enhancement
Quality

This table 4 underscores the efficacy of meta-learning in
the context of Neural Radiance Fields (NeRF), specifi-
cally in rapidly acquiring a scene’s understanding with a
few images while achieving high Peak Signal-to-Noise Ra-
tio (PSNR). The comparison between meta-training with 3
views and 6 views reveals the model’s capacity to excel in
scene comprehension without reliance on external models.
The reported PSNR values showcase the efficiency of meta-
learning in enhancing image quality, particularly notewor-
thy for its ability to achieve substantial improvements even
with a limited number of input images.



3 Views 6 Views

Top 25% Top 50% Top 75% Top 100% Top 25% Top 50% Top 75% Top 100%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Donut 23.43 0.783 22.27 0.693 21.39 0.583 20.30 0.554 26.45 0.797 25.45 0.773 24.57 0.753 23.41 0.723
Apple 25.28 0.794 24.26 0.703 23.30 0.682 22.04 0.653 27.71 0.808 26.77 0.789 25.95 0.774 24.71 0.745
Hydrant 22.36 0.850 21.36 0.740 20.70 0.722 19.96 0.692 26.03 0.862 25.14 0.851 24.47 0.840 23.60 0.814
Vase 24.43 0.826 22.45 0.700 20.99 0.647 19.52 0.586 26.94 0.847 25.33 0.808 23.71 0.766 21.93 0.699
Cake 22.03 0.801 20.25 0.678 18.82 0.500 17.52 0.461 26.10 0.775 24.63 0.739 23.26 0.706 21.48 0.650
Ball 23.29 0.742 21.54 0.602 20.45 0.573 19.33 0.538 25.35 0.767 23.82 0.731 22.71 0.702 21.46 0.662
Bench 20.73 0.794 19.39 0.624 18.36 0.532 17.30 0.483 21.96 0.708 20.64 0.651 19.56 0.604 18.37 0.552
Suitcase 25.08 0.809 23.34 0.629 22.09 0.596 20.74 0.556 28.46 0.837 26.74 0.809 25.20 0.779 23.71 0.739
Teddybear 20.87 0.749 19.40 0.568 18.28 0.533 17.03 0.488 24.34 0.763 22.64 0.714 21.01 0.659 19.30 0.593
Plant 22.60 0.662 21.21 0.565 20.16 0.531 19.12 0.491 24.32 0.708 22.74 0.663 21.70 0.622 20.44 0.572

Table 4. Comparison of PSNR and SSIM Values for Meta-Training with 3 Views and 6 Views. The table presents the Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM) values obtained through meta-training using 3 views and 6 views, without
dependency on external models. Additionally, the table reports average PSNR and SSIM values by selecting the top quartiles from the
evaluated scenes, demonstrating the impact of varying view counts on image quality enhancement.
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