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Abstract—A brain tumor is a potentially fatal growth of cells 
in the central nervous system that can be categorized as benign 
or malignant. Advancements in deep learning in the recent 
past and the availability of high computational power have 
been influencing the automation of diagnosing brain tumors. 
DenseNet and U-Net are considered state of the art deep 
learning models for classification and segmentation of MRIs 
respectively. Despite the progress of deep learning in diagnosing 
using medical images, generic convolutional neural networks are 
still not fully adopted in clinical settings as they lack robustness 
and reliability. Moreover, such black-box models don’t offer a 
human interpretable justification as to why certain classification 
decisions are made, which makes them less preferable for medical 
diagnostics. Brain tumor segmentation and classification using 
deep learning techniques has been a popular research area in the 
last few decades but still, there are only a few models that are 
interpretable. In this paper, we have proposed an interpretable 
deep learning model which is more human understandable 
than existing black-box models, designed based on U-Net and 
DenseNet to segment and classify brain tumors using MRI. In 
our proposed model, we generate a heat map highlighting the 
contribution of each region of the input to the classification output 
and have validated the system using the MICCAI 2020 Brain 
Tumor dataset. 

Index Terms—Interpretable machine learning, Brain tumor, 
Segmentation, Classification, MRI 

 

I. INTRODUCTION 

A brain tumor is a collection of abnormal cells growing 
inside the brain. A Brain tumor is mainly classified as Benign 
or Malignant. Benign brain tumors are less harmful because 
they do not invade or spread to other nearby tissues. While 
on the contrary malignant brain tumors are more invasive 
and spread to other areas of the brain and spine as well. 
Brain tumors are the most common central nervous system 
(CNS) related cancer which account for 85%-90% of all the 
CNS tumors [1]. Still, medical experts have not been able to 

discover exact causes for brain tumors or unique symptoms 
related to brain tumors. The survival rate of patients with 

a malignant form of brain tumors like Glioblastoma is as 
low as 6%-9% [2]. Inability to diagnose and identify their 
types at early stages further reduces the survival rate of brain 
tumor patients considerably. Currently, there are several brain 
tumor diagnosis techniques like EEG, CT scan, PET scan. 
Among them, Magnetic Resonance Imaging (MRI) is the most 
common diagnostic process followed by medical officers to 
identify brain tumors. However, the MRI technique generates 
hundreds of images making the diagnostic process exhaustive 
which hinders early diagnosis and treatments for tumors [3]. 

Under existing procedures, medical practitioners have to 
go through highly time-consuming routine tasks dealing with 

a large number of images to identify and classify a brain 
tumor. Making this process more efficient can increase the 
survivability of patients. The real-world medical diagnostic 
procedure is to first confirm the existence of a tumor and 
identify it using MRIs. If the existence of a tumor is confirmed, 
further analysis is carried out on MRIs and also a biopsy if 
required, to classify the tumor. 

With the advancement of AI and Deep learning in the 
field of medical imaging, image processing techniques such 
as image vision, classification, segmentation help radiologists 
to diagnose diseases as early as possible compared to manual 
inspections [4]. Since technology is intervening in the medical 
field, the technological solutions must be reliable and efficient 
as it keeps human life on the line which mistakes can bring 
major consequences. Currently, there are many systems based 
on black-box deep neural networks that aim to improve the 
accuracy of their predictions [5], [6]. When it comes to high 
stake fields like medical diagnosis it is not all about accuracy. 
The system has to make sense at least for domain experts. 
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Fig. 1. Heat maps generated at two different depths for test case-I where each 
column shows segmented results, resulted heat map, original input image, and 
heat maps are superimposed on top of the original image respectively. Color 
range at the bottom convince the contributing level of each region where 
dark blue for less contributing regions while dark red for highly contributing 
regions for classification. 

 
 

Hence, in this paper, we have proposed an interpretable model 
to ensure the final system is more reliable compared to existing 
models and can be applied in the real world. What we mean by 
interpretability is the model must be understandable to humans 
unlike generic black-box models and the decisions made inside 
the neural network must be transparent. Furthermore, using 
a segmentation module we make the classification process 
understandable even for a non-expert in the medical domain. 
As in Fig. 1 if we output the contribution level of each region 
of the input image towards the final predicted output of a 
model, then it is a way of interpreting the decision making 
process of the model. 

Our contribution resides on achieving the decision making 
process of deep learning models more transparent such that the 
models become more reliable. To enable this transparency, heat 
maps are generated automatically specifying the contribution 
level of each region of the inputs towards the decision making 
process of the model. Thus, we have provided an interpretable 
solution to classify brain tumors into 3 malignant tumor classes 
Glioblastoma, Oligodendroglioma, Astrocytoma, and segment 
brain tumors using MRI. 

II. RELATED WORK 

Encoder with decoder CNN architectures such as U-Net [7], 
3D U-Net [8] are producing state-of-art results for medical 
image segmentation as they overcome the gradient vanishing 
problem through skip connections. The final output of these 
types of encoder-decoder architectures is a semantic seg- 
mented image [9]. Studies have addressed brain tumour iden- 
tification in different viewpoints such as using radiogenomic 
[10] and mRNA expressions to predict the survival and risk 
estimation [11]. Since our model segments out the brain tumor 

from MRIs, we have utilized VAE 3D U-Net architecture [12] 
which is an encoder-decoder architecture with a variational 
auto-encoder branch, and also this architecture won the BraTS 
2018 challenge. Variational auto-encoder branch reconstructs 
the input image itself to regularize the shared decoder and 
impose additional constraints on its layers. 

Classifying brain tumors using only MRI is a challenging 
task. Generally, both MRI and pathology images are used for 
better results as in [13], [14]. Since we are focusing on provid- 
ing an interpretable solution in this paper, we have used only 
MRI for classification. However, the proposed method can be 
transferred to interpret classification using pathology images 
also. Pei et al. [15] have suggested a deep convolutional neural 
network to classify a segmented tumor to achieve a balanced 
accuracy of 0.749 and F1-score of 0.829. Despite having 
a segmentation module for completeness of the diagnosis 
system we have not used segmentation results for classification 
because the complete brain image is more meaningful when 
interpreting the classification predictions. In [14], the authors 
have achieved a kappa coefficient of 0.748 and F1-score of 
0.829 for MRI classification using a 3D DenseNet121 model. 
Both [14], [15] are trained on the CPM-RadPath-2019 dataset 
which is similar to the dataset [16] used in this paper in size, 
dimensions, class labels, and class distribution. Most of the 
existing literature [5], [6], [14], [15] are solely intended to 
enhance the performance of predictions. Performance focused 
model development is encouraged by popular competitions 
irrespective of the ability to apply in the real world. As state- 
of-art models are reaching peak performance for classification, 
further research must be carried out to improve applicability 
of the models. 

Neural networks are inherently black boxes in nature. Thus, 
most of the existing models based on deep neural networks 
[13], [14], [15] are also less human-understandable. So, in 
our model, we have overcome this weakness of deep neural 
networks by introducing interpretable machine learning to 
the classification module. Gradient-weighted Class Activation 
Mapping (Grad-CAM) is an interpretable technique proposed 
in [17] for making CNN-based models more explainable and 
transparent. The technique is based on gradients of the most 
dominant logit of the result related to feature maps of the final 
convolutional layer which eventually produces a localization 
map highlighting the regions of the input image concerning 
the importance level of the region for predicted output. Grad 
CAM has addressed the drawbacks of the most commonly 
used interpretable technique, Class Activation Maps [18] of 
having a specific architecture and the need of re-training the 
model. The generated Grad CAM can be placed as an overlay 
on top of the input image (like a heat map). 

 
 

III. DATASET 

 
We have used two separate publicly available datasets for 

each task segmentation and classification. 
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A. Dataset for Segmentation 

The dataset [19], is annotated in medical image datasets 
for the development and evaluation of segmentation models. 
The dataset includes data related to different body organs 
out of which we have selected the brain tumor dataset. This 
dataset includes MRI scans stored in the NifTI-1 format, 
related to patients diagnosed with either glioblastoma or lower- 
grade glioma. The MRI sequence includes, Fluid Attenu- 
ated Inversion Recovery (FLAIR), T1-weighted (T1w), T1- 
weighted with gadolinium contrast enhancement (T1gd) and 
T2-weighted (T2w). 

The dataset includes 484 images which we split into 400 for 
training and 84 for validation. The labeled segmented images 
have four sub-regions of the tumor with integer values 0, 1, 2, 
and 3 representing background, edema, non-enhancing tumor 
and enhancing tumor respectively. 

B. Dataset for Classification 

We have used the dataset published for the MICCAI 2020 
Combined Radiology and Pathology Classification Challenge 
[20], available at [16] for classification. This dataset contains 
images of 221 cases (70% - training dataset, 20%- valida- 
tion dataset, 10% - test dataset) with 3D radiology images 
in NIfTI(.nii) format. The dataset consists of pre-processed 
images of 3 classes of brain tumors; 

1) Lower-grade astrocytoma (A) 
2) Oligodendroglioma (O) 
3) Glioblastoma and Diffuse astrocytic glioma (G) 

MRIs were multi-parametric, which means they have multiple 
modalities. In this dataset, there were 4 image modalities for 
each T1-weighted MRI (T1), T1-weighted MRI with contrast 
enhancement (T1ce), T2-weighted MRI (T2) and T2-weighted 
MRI with fluid-attenuated inversion recovery (T2-Flair). 

IV. METHODOLOGY 

In this section, we have focused on our approach to design a 
complete model to replicate the medical procedure to diagnose 
a brain tumor and introduce interpretability to the model. The 
design of the whole system will be discussed in a modular 
approach to get a better insight. 

A. Preprocessing 

Preprocessing of data can be explained under the following 
criteria. 

1) Segmentation: The MRI dataset for segmentation was 
already skull-scripted. The original dimensions H×WxDxC of 
input images are changed into CxH×WxD and we carried out 
standard normalization depth-wise to reduce noise. We needed 
to feed a single sequence of MRI (FLAIR, T1w, T1gd, T2w 
modalities acquired for a patient) in an iteration to U-Net such 
that the model can extract features from all MRI volumes in 
the sequence. Since the size of a volume is 240x240x155, 
we had to crop the volume such that the size is reduced to 
160x192x128 to match memory limits. Then this preprocessed 
dataset is used for segmentation. 

2) Classification: The selected MRI dataset for this module 
was also skull-scripted and denoised. We carried out stan- 
dard normalization to reduce intensity in-homogeneity. The 
background was cropped with an intensity level tolerance 

threshold of 10−8, then MRI volumes were downsampled 
to 120x148x120. The training set was extended using the 
following augmentation techniques; random affine, random 
horizontal flip, random vertical flip, and random elastic de- 
formation. 

B. Proposed Solution 

The proposed solution in this paper has two main modules 
for semantic segmentation and classification of brain tumors. 
The high-level architecture diagram of the complete system 
is shown in Fig. 2. Grad CAMs are used in the classification 
module to make the predictions more interpretable. 

 

Fig. 2. High-level architecture diagram of the complete solution - The model 
takes MRI volumes as input and generates three main outputs; segmentation 
predictions, classification predictions, and Grad CAMs to visualize classifica- 
tion decision making process. 

 
1) Segmentation Module: Our segmentation approach is 

based on [12] which is an encoder-decoder architecture with 
three modules - encoder, decoder and variational auto-encoder 
(VAE) branch. We input a sequence of cropped 3D MRI vol- 
umes (4x160x192x128) to the encoder module and finally the 
model produces three channels (3x160x192x128) of semantic 
segmented 3D MRI volume with the same spatial size as the 
input volume for each brain tumor sub-region (here we have 
considered edema, non-enhancing tumor and enhancing tumor 
sub-regions without considering the tumor background as a 
sub-region since we can get the tumor background through the 
combination of edema, non-enhancing tumor and enhancing 
tumor sub-regions). We have used a batch size of 1 as specified 
in [12]. 

The encoder module is comprised of multiple ResNet blocks 
[21] where each block consists of two 3D convolutions with a 
kernel size of 3 followed by a group normalization layer and 
ReLU layer. At each level of the encoder module, the image 
dimensions are down-sized by 2 using stridden convolutions 
instead of using traditional pooling and the feature size is 
increased by 2. 

The decoder module is also structured similar to the encoder 
module with the same number of spatial levels where each 
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level includes only one 3x3x3 convolution. Each decoder 
block begins with reducing the feature size by 2 (using 
3D convolution with kernel size 3) and upsizing the spatial 
dimensions after concatenating the output from the respective 
equivalent encoder level. At the end of the decoder module, we 
get an output volume with the same volumetric dimensions as 
the input to the encoder module. This output is sent via 1x1x1 
convolution and a sigmoid function to get 3 channels (because 
the tumor has 3 sub-regions). 

The VAE branch is used only in the training phase to 
regularize the encoder. As proposed in [12], we were able 
to achieve better training accuracy by implementing a VAE 
branch other than without it. 

2) MRI Classification Module: Input MRI volumes have 
dimensions of 120x148x120 after downsampling and each 
of the four modalities was considered as separate channels. 
DenseNet [22] architecture was used to implement the classi- 
fier because of its ability to perform well with a lower number 
of parameters compared to other architectures in classification 
tasks. We have used a DenseNet-BC model with 169 layers 
and a growth rate of 32. The original DenseNet-BC model 
was modified to accommodate 3D convolution, 3D pooling, 
and 3D batch normalization to accord with 4D input volumes. 

Learning rate and weight decay were set to 10−4 and 10−5 
respectively. The batch size was set to 4 due to limited GPU 
memory. A dropout layer was added to every transition block 
and dense block with a drop rate of 0.2. 

 

 

 
Fig. 3. Classification module has conv (convolution), maxpool (max pooling), 
block (dense block), trans (transition layer), bn (batch normalization), avgpool 
(average pooling), fc (fully connected) layers connected sequentially. 

 

Interpretable Approach: We have utilized the Grad CAM 
technique which finds the gradient of the most dominant 
logit concerning the feature maps of the final convolution 
layer in the trained model as the interpretable approach of 
the proposed solution. So, we have used M3D-CAM library 
[23] for generating Grad CAMs for classified MRI volumes. 
The generated Grad CAMS are resized to match with the 
input volume dimensions (120x148x120). Then Grad CAM 
slices (like a heat map) of size 148x120 are superimposed on 
corresponding input slices of the same size as in Fig. 4 which 
results in 120 superimposed 2D images at different depths. 
The output heat map depicts which regions of the input MRI 
slice were informative to predict the corresponding dominant 
logit by the trained model. 

 

 
 

Fig. 4. Grad CAM is superimposed on an MRI slice like a heat map. This 
interprets that the highlighted areas are highly contributed to give the final 
output of the model. 

 
 

V. RESULTS & DISCUSSION 

A. Segmentation 

After training for 300 epochs as stated in paper [12], the 
segmented volumes we got as the output were 160x192x128 
for each tumor sub-region which is a cropped part of the 
original MRI volume (240x240x155). Then taking exact lo- 
cations of voxels in output concerning input volume, we have 
created predicted labels overlaid over FLAIR sequence on 
axial, sagittal, and coronal slices. Fig. 5 illustrates a predicted 
labeled brain tumor from our model with respect to its true 
labels. The tumor is labeled as edema (red), non-enhancing 
tumor (green) and enhancing tumor (blue). 

The combination of all sub-regions (union of 3 colors) is 
the whole tumor (WT), combinations of enhancing and non- 
enhancing regions (union of blue and green) is the tumor core 
(TC). Here we can see the predicted output is well matching 
with ground truth. 

 

 
Fig. 5. Segmented MRI for a test image compared with its ground truth label, 
each image is a cross-section generated at the middle of each axis of MRI 
volume. Tumors are labeled as edema - red, non-enhancing tumor - green, 
enhancing tumor - blue. 

 
Dice coefficients of WT, TC, and enhancing tumor (ET) 

which we used as an evaluation metric of our model are as 
follows compared with the respected results in the original 
VAE U-Net in Table I. We were able to achieve interesting 
results like the original model but using a different dataset 
could be the reason for a slight difference in values. 
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TABLE I 
SEGMENTATION RESULTS (DICE COEFFICIENTS) ON TEST SET OF OUR 

MODEL COMPARED WITH ORIGINAL VAE U-NET 

 
 ET WT TC 

Proposed model 0.7787 0.8849 0.8041 
Original VAE U-Net 0.8145 0.9042 0.8596 

 
 

B. Classification 

After completing 20 epochs we were able to achieve the 
best results for the test dataset. The confusion matrix Fig. 
6 and values for performance metrics are shown in Table II. 
We have used balanced accuracy, f1-score, and Cohen’s kappa 
coefficient to estimate the performance of our classification 
model to cater for the imbalanced nature of the dataset used 
which consisted of 133 cases of glioblastoma (G), 54 cases 
of astrocytoma (A), and 34 cases of oligodendroglioma (O). 
One major objective of the classification model is to train the 
hidden layers to an acceptable level that we can accommodate 
class activation maps to interpret classification predictions. 

 

Fig. 6. Confusion matrix for MRI classification for test set consist of 21 
cases: G (glioblastoma), A (astrocytoma), O (oligodendroglioma). 

 

 
TABLE II 

CLASSIFICATION  RESULTS  ON  TEST  SET 

 
 

 Class G Class A Class O Micro average 

Balanced accuracy 0.899 0.838 0.833 0.893 
F1-score 0.923 0.727 0.8 0.857 

Kappa coefficient - - - 0.733 

 

 
C. Interpretable ML for Classification 

We used the same test set used in Section V-B and generated 
heat maps for each test case, from our trained DenseNet model. 
To confirm the position of brain tumors and check how precise 
the Grad CAMs are, we have segmented the same images 
using our trained U-Net model then compared segmented 
output with heat maps generated from Grad CAM. Although 
Grad CAM generally considers gradients of the most dominant 
logit with respect to the feature maps of the final convolution 
layer, we had to use other layers. Because the Grad CAMs 
generated using the final convolution layer were too small in 
dimensions (3x4x3). Hence when we resized the maps back 
to original input volume dimensions (120x148x120) did not 

generate acceptable results. Therefore, we tried on different 
layers and found block1 layer (Fig. 3) as the best layer to 
generate Grad CAMs. 

Fig. 1 and Fig. 7 show segmented results, Grad CAM 
results, an original input image, Grad CAM superimposed on 
top of the original image for 2 test cases. Each of these images 
shows a comparison of the 4 above-mentioned views at two 
different depths (in each row) of the input volume. The color 
range of the Grad CAM is from dark blue to dark red as in 
the bottom of Fig. 1 where dark blue for fewer contributing 
regions while dark red for highly contributing regions for 
classification. 

 

Fig. 7. Grad CAMs were generated at two different depths for test case 
II where each column shows segmented results, Grad CAM results, an 
original input image, Grad CAMs superimposed on top of the original image 
respectively. 

 
By looking at Fig. 1 and Fig. 7, we can see which regions 

of the MRI were highly contributed and slightly contributed to 
give the predicted classification output. So, the model is more 
human-understandable such that anyone can understand which 
regions of the MRI were used by the model for classification. 
With the corresponding segmented MRI for each case, we can 
be confident about Grad CAM heat maps. The generated heat 
maps can also be used as an alternative for segmentation when- 
ever pixel-wise correctness is not required. Labelling MRI 
datasets and training models for brain tumor segmentation are 
highly computationally expensive tasks. Therefore, using heat 
maps as an alternative is a trade-off between accuracy and 
resource requirement. 

Another interesting observation we came across in our study 
is, for certain depths (topmost and bottom-most) of MRI 
volume where tumor does not exist, Grad CAM indicates the 
whole brain is equally important for predictions as shown in 
the first and third rows of Fig. 8. 

VI. CONCLUSION 

In this paper, we have proposed an interpretable machine 
learning pipeline to diagnose brain tumor using MRI inspired 
by the real-world diagnosis procedures. Interpretability is crit- 
ical for deep learning solutions applied in high-stake domains. 
Despite the large number of papers published in the domain 
of brain tumor classification and segmentation using ML, we 
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Fig. 8. Grad CAM of regions generated at different depths of same MRI 
volume where tumor exists (row 2) and does not exist from bottom view 
(row 1) and from top view (row 3) of brain. 

 

did not find much research work on applying interpretable 
ML. The proposed solution combines a U-Net model for seg- 
mentation and a DenseNet model for classification. The main 
focus of this study is to apply interpretable machine learning to 
understand how state-of-art models produce results and ensure 
that the produced results are based on important features that 
define the target. The ability to explain decision-making mech- 
anisms can enhance the potential to apply existing systems in 
real-world scenarios. We have applied Grad CAM at different 
levels of DenseNet and different depths of MRI volumes. 
During this study, we observed that deeper layers of DenseNet 
cannot be used to generate Grad CAMs because generated 
Grad CAMs at those layers are too small to map back to 
the input size. We also observed how the classification model 
reacts for parts of the input image where the tumor does not 
exist. In conclusion, we were able to interpret the contribution 
of each region of the input towards the predicted output of 
DenseNet which is a state-of-art classification model. 
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