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Abstract

Monocular depth estimation presents a significant challenge due to the inherent complexity of deriving three-dimensional structures 
from two-dimensional imagery. Additionally, in the context of Mars satellite imagery, further challenges need to be overcome given 
data limitations and the substantial demand for computational resources. Our research introduces a novel Conditional Diffusion 
Model to address efficient depth map generation from monocular images of planetary landforms. Leveraging the advanced feature 
extraction capabilities of the Swin Transformer, our approach generates depth maps accurately by incorporating rich contextual 
information. This study not only addresses the computational and data-related challenges of traditional depth estimation methods 
but also significantly improves inference times, making it highly applicable to remote sensing and planetary geosciences. By 
presenting a scalable and efficient solution for accurate depth perception from limited single-image inputs, this work contributes 
to advancements in both computer vision technology and the exploration of Martian topography. Our open-source software and 
dataset contribution can be found at https://monogeodepth.github.io/mono-geo-depth/.
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1. Introduction

Depth estimation is a critical task in planetary science, par- 
ticularly in remote sensing and photogrammetry applications. 
Accurate depth maps are essential for a range of operations, in- 
cluding landing site selection, terrain navigation, and detailed 
geological studies. The ability to derive depth information 
quickly from satellite images of planetary surfaces, such as 
those of Mars, is particularly important given the time-sensitive 
nature of many missions and the challenging environments in- 
volved (Epp et al., 2014).

Traditional depth estimation techniques, including stereovi- 
sion, structure from motion (SfM), and LiDAR data fusion, 
have been extensively studied and applied. However, these 
methods face significant limitations when it comes to compre- 
hensive data collection on celestial bodies. For instance, stere- 
ovision and SfM require multiple viewpoints, which are not al- 
ways feasible for planetary missions. Similarly, LiDAR, while 
highly accurate, is often constrained by the weight and power 
requirements of space missions, limiting its applicability for 
broad surface analysis.

Monocular depth estimation (MDE) emerges as a promising 
alternative, capable of generating depth maps from single im- 
ages while avoiding the data collection issues associated with 
binocular or multi-view methods. Recent architectural innova- 
tions, such as AdaBins (Bhat et al., 2021), have made signifi- 
cant strides in improving the accuracy of MDE. Despite these 
advances, there is still a gap in applying these methods to the 
specific context of satellite imagery. Also, one of the significant 
challenges in this field is the scarcity of ground-truth depth

Figure 1: Illustration of MonoGEOdepth: Top: input satellite images. Bottom: 
depth predicted by our model

data, which is crucial for training and validating depth estima- 
tion models (Hargitai et al., 2015).

Our project focuses mainly on Mars due to its rich and sim- 
ple geological diversity, availability of data, and relevance to 
space exploration. By leveraging the advancements in MDE, 
we aim to enhance the depth estimation techniques specifically 
for Mars satellite imagery, thereby contributing to more accu- 
rate and efficient data analysis in planetary science (Martin, 
2021), (Xiao, 2023).

This research builds on the recent success of vision trans- 
formers (ViTs) (Dosovitskiy et al., 2020) and Diffusion Mod-
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els (Ho et al., 2020), which have demonstrated superior perfor- 
mance over traditional Convolutional Neural Network (CNN) 
based models in feature extraction tasks (Dosovitskiy et al., 
2020), (Liu et al., 2021). While approaches like the Genera- 
tive Adversarial Network-based method proposed by La Grassa 
et al. (Grassa et al., 2022) have shown promise for monocular 
depth estimation from 2D HiRISE images, Diffusion Models 
are noted for their better noise adaptability, distribution cov- 
erage, and scalability (Dhariwal and Nichol, 2021), (A et al., 
2018a), (I et al., 2020), (A et al., 2021).

The core innovation of our method lies in leveraging these 
advances to develop a monocular depth estimation technique 
specifically tailored for Mars satellite imagery, with a focus on 
improving inference time. By optimizing the inference pro- 
cess through a single-step forward and backward diffusion pro- 
cess, rather than an iterative process, our approach addresses 
the practical constraints of planetary missions, offering a more 
efficient solution for real-time depth estimation. This enhance- 
ment is crucial for operations that require timely data process- 
ing, such as autonomous navigation and landing site analysis 
(Subramanian et al., 2023).

1.1. Related Work

This paper addresses the critical need for a novel monocu- 
lar depth estimation method specifically designed for analyzing 
Mars satellite images. In computer vision, traditional depth es- 
timation is divided into three categories: monocular depth es- 
timation (MDE), binocular depth estimation (BDE), and multi- 
view depth estimation (MVDE) (Masoumian et al., 2022). Data 
collection feasibility issues limit the viability of approaches 
such as BDE, MVDE, and LiDAR data fusion for comprehen- 
sive analysis across entire planetary landscapes, despite their 
promising performance in a variety of applications. As a result, 
developing a monocular depth estimation method for satellite 
imagery has emerged as a critical domain at the intersection of 
computer vision and planetary geoscience.

Monocular depth estimation, the task of predicting depth 
maps from single RGB images, has seen significant advance- 
ments in recent years. Early work by Saxena et al. (2005a) 
adopted a supervised learning approach, collecting training data 
from monocular images of unstructured outdoor scenes and 
their corresponding ground-truth depth maps. Their model 
employed a discriminatively-trained Markov Random Field 
(MRF) that considered multiscale local and global image fea- 
tures. This approach demonstrated promising results in recov- 
ering accurate depth maps, even in challenging environments.

Introducing a two-step approach, Eigen et al. (2014) tackled 
the monocular depth estimation problem by utilizing two deep 
network stacks: one for coarse global predictions and another 
for local refinements. To mitigate the issue of scale ambigu- 
ity, they introduced a scale-invariant error metric. Eigen et al.’s 
method achieved state-of-the-art results on benchmark datasets 
without the need for super pixelation, showcasing its effective- 
ness in handling this challenging task.

Laina et al. (2016) proposed a fully convolutional architec- 
ture that incorporated residual learning for monocular depth

estimation. Their network included a novel feature map up- 
sampling technique and introduced the reverse Huber loss, 
specifically tailored for depth maps. One of the key advantages 
of their approach was its real-time performance on images and 
videos, coupled with the requirement of fewer parameters and 
less training data compared to the existing state-of-the-art.

In contrast to regression-based methods, Cao et al. (2017) 
and Fu et al. (2018) reformulated depth estimation as a pixel- 
wise classification task. They discretized continuous ground- 
truth depths into bins and used fully convolutional deep residual 
networks for classification. This shift allowed them to estimate 
depth ranges and provide confidence levels for their predictions, 
which could be further improved using post-processing tech- 
niques such as Conditional Random Fields (CRF).

Yuan et al. (June 2022) introduced the neural window Fully 
Connected Conditional Random Fields (FC-CRFs) to optimize 
depth estimation. They leveraged the potential of fully con- 
nected CRFs by splitting the input into windows, reducing com- 
putation complexity. A multi-head attention mechanism was 
employed to compute potential functions, significantly improv- 
ing performance on benchmark datasets.

Recent advancements in monocular depth estimation meth- 
ods have demonstrated significantly improved results compared 
to the pre-deep learning era, as evidenced by various refer- 
ences focusing on CNN, deep learning, and transformer-based 
monocular depth estimation.

Among these methods, Yang et al. (October 2021) pro- 
posed TransDepth, an innovative architecture that combines the 
strengths of both CNNs and transformers. Their introduced 
decoder with attention mechanisms based on gates effectively 
captures both local and global information, achieving state-of- 
the-art performance on challenging datasets.

Adopting a cross-distillation approach, Shao et al. (2023) 
combined Transformer and CNN strengths, along with un- 
certainty modeling and data augmentation techniques. Their 
model, URCDC-Depth, outperformed previous state-of-the-art 
methods with no additional computational burden at inference 
time.

Furthermore, Bhat et al. (2021) addressed global informa- 
tion processing in depth estimation by introducing the AdaBins 
architecture, which utilizes a transformer-based approach to 
adaptively divide the depth range into bins and estimate bin 
centers for each image. This technique led to substantial im- 
provements over the state-of-the-art on various depth datasets.

In recent years, there has been a notable increase in at- 
tempts to use generative methods for monocular depth estima- 
tion. Grassa et al. (2022) ventured into monocular depth es- 
timation from satellite images, introducing SRDiNet, a GAN- 
based (Goodfellow et al., 2020), (Y et al., 2019 May), (B et al., 
2021), (A et al., 2018b) solution that estimates digital terrain 
models (DTMs) at a higher resolution from a single image. This 
approach combines super-resolution and DTM estimation, en- 
hancing fine details in the final output.

Additionally, Saxena et al. (Feb. 2023) investigated the appli- 
cation of Denoising Diffusion Models (Ho et al., 2020), (Song 
et al., 2021), (Song and Ermon., 2019), (Trippe et al., 2022), 
(Hoogeboom et al., 2022) to monocular depth estimation, ad-
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dressing challenges arising from noisy and incomplete depth 
data. Their work illustrates the potential of enhancing the accu- 
racy of depth estimation in satellite imagery, facilitating more 
precise mapping and analysis of terrestrial features and land- 
scapes from space in our project.

Vision Transformers (ViTs) (Ranftl et al., 2021), (Dosovit- 
skiy et al., 2020) have emerged as a compelling alternative to 
CNNs in various computer vision applications. Previous work 
has suggested that integrating GANs with ViTs can improve the 
performance of state-of-the-art methods for monocular depth 
estimation in both indoor and outdoor image scenarios. Lee 
et al. (2019) explored this integration, proposing techniques to 
stabilize the discriminator and modifying the generator’s archi- 
tecture to address the instability of GAN training with ViTs. 
(Gu¨ndu¨c¸, Oct. 2021) introduced Vit-Gan, a versatile architec- 
ture for image-to-image translation tasks, including semantic 
image segmentation and single-image depth perception. Lever- 
aging vision transformers and Conditional GANs with a Marko- 
vian discriminator (PatchGAN), Vit-Gan aims to enhance real- 
ism in generated images. While traditional loss functions often 
lead to blurry results, optimization techniques like GANs fo- 
cus on producing sharp and realistic outputs. However, despite 
these advancements, overall ViT integration with GANs does 
not outperform other state-of-the-art CNN-based GAN archi- 
tectures.

Several of the noteworthy papers for the above, along with a 
few other papers, are summarized in Table 1.

1.2. Contributions
The domain of planetary depth estimation faces distinct chal- 

lenges, most notably the scarcity of ground truth satellite depth 
data and the significant computational resources required for 
analysis. This study addresses these issues.

The contributions of this paper are:

• Proposing a novel approach with faster inference for 
monocular depth estimation with inherent adaptability of 
Diffusion Models and Vision Transformers to effectively 
mitigate the impact of noise in satellite imagery.

• Contributing to the existing largest HiRISE dataset, which 
consists of 679 DTMs for depth estimation, by expanding 
it to 983 DTMs.

• Developing an open-source application that seamlessly 
translates satellite images into accurate depth representa- 
tions.

This paper aims to push the boundaries of monocular depth 
estimation in planetary imagery, thus opening the way for im- 
proved understanding and analysis of celestial bodies like Mars 
via innovative computer vision methodologies.

1.3. Paper structure
The remainder of the paper is organized as follows: Section 2 

describes the methodology. It discusses the preprocessing steps, 
design decisions, details about the deep learning model, and in- 
ference time. Section 3 describes the dataset created and used

Reference Year Methodology
Saxena et al. (2005a) 2005 discriminatively-

trained Markov
Random Field 
(MRF)

Eigen et al. (2014) 2014 CNN
Laina et al. (2016) 2016 CNN
Cao et al. (2017) 2017 Classification  using

deep fully convo- 
lutional residual 
networks

Fu et al. (2018) 2018 Deep ordinal regres-
sion network

Gü ndü ç  (Oct. 2021) 2019 Encoder-Decoder
network

Bhat et al. (2021) 2021 Encoder-Decoder
network

Yang et al. (October
2021)

2021 ViT

Yuan  et  al.  (June
2022)

2022 CRF

Kim et al. (2022) 2022 Encoder-Decoder
network

Patil et al. (2022) 2022 Combines a neural
network architec- 
ture with a novel 
approach to predict 
dense plane coef- 
ficients and seed 
pixels

Shao et al. (2023) 2023 Both Transformer
and CNN

Li  et  al.  (March
2023)

2023 CNN-Transformer
hybrid network

Table 1: Summary of Related Work

and summarizes the experimental findings, including test re- 
sults for model validation and comparison. It also contains the 
implementation details of our model. In section 4, we discuss 
the findings and provide context for them. Then in section 5 
we provide our deliverables. Finally, in Section 7, we present a 
summary of the findings and draw our conclusions.

2. The MonoGEOdepth Architecture

Our project draws inspiration from the foundational Stable 
Diffusion architecture, as outlined in the original paper on the 
subject (Rombach et al., Apr. 2022). Diffusion Models are 
renowned for their performance in generative tasks, especially 
in text-to-image generation. In a Diffusion Model, there are two 
main processes:

1. Forward diffusion process.
2. Reverse diffusion process (Denoising process).
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Figure 2: Architecture diagram of Stable Diffusion which is the main inspiration for our approach. The Stable Diffusion Model consists of an image encoder and 
an image decoder to convert between pixel space and the latent space. In the latent space, the forward diffusion process (noise addition) and the reverse diffusion 
process (noise reduction) happen to generate a new image. Images, representations, a semantic map, or text can be used as conditioning to remove the noise.

Furthermore, in Stable Diffusion as shown in Figure 2, these 
two processes occur in a lower-dimensional latent space. A 
Variational Autoencoder is used to convert images from pixel 
to latent space. By doing this, the Stable Diffusion Model can 
generate high-quality images with lesser computational require- 
ments.

During the forward diffusion process, the model blurs the 
original image with Gaussian noise. In this process, the noise 
added to the image depends only on the previous image.

T

(Dhariwal and Nichol, 2021). We recognized its potential to be 
modified as an image-to-image generation model for depth esti- 
mation tasks. However, to tailor this architecture to our specific 
goals, we proposed several strategic changes. Our adaptation 
relied heavily on the combination of conditioning, Variational 
Autoencoder (VAE), and A noise scheduler. As opposed to a 
text-to-image generation model like the stable Diffusion Model, 
our model is a conditional image-to-image generation model.

2.1. Data Preparation
q(x1:T |x0) = q(xt|xt−1) (1)

t=1 Our dataset consists of images captured for the High-
In Equation (1), x0 is the original image, and xt is the image 

with noise added after t timesteps. The way in which noise is 
sampled is described by the following formula. According to 
that, the noise is based on a specific variance t, where I is a unit 
matrix. t defines how much noise we need to add at each step 
(Ho et al., 2020).

q(xt|xt−1) = N(xt; 1 − βt xt−1, βtI) (2) 
In the reverse diffusion process, a U-Net neural network is 

trained to unblur this image, based on the conditioning provided
to the Diffusion Model. Here the U-net is denoted as uθ(xt, t),

and during this process, the network gradually denoises the im- 
age by predicting xt−1 using xt.

p(xt−1|xt) = N(xt−1; uθ(xt, t), βtI) (3) 
By iteratively applying the above process, the Diffusion 

Model can generate a noiseless image, which is a depth map
in our domain.

In recent years, Diffusion Models have been used for other 
tasks such as gap filling of incomplete depth images (Sax- 
ena et al., Feb. 2023) and segmentation (Chen et al., A2022),

Resolution Imaging Science Experiment (HiRISE) (HiRISE 
Repository), (Mattson et al.) project. This project, which 
started in 2005, uses a powerful camera that can capture images 
on Mars’s surface with a resolution of 0.25m per pixel. These 
cameras are onboard the NASA Mars Reconnaissance Orbiter, 
which is located 200km to 400km above the surface of Mars.

Due to the limitations of computational resources and time, 
we selected a set of 300 Digital Terrain Models (DTMs) for our 
training set. The three DTMs captured from the Oxia Planum 
site were used as the validation dataset. The resolution of the 
DTMs is 1 m pixel−1, while the resolution of the associated 
satellite images can vary from 0.25 m pixel−1 to 2 m pixel−1. 
During data preparation, we applied nearest-neighbor interpo- 
lation methods to convert the satellite images to the same res- 
olution as the DTMs. Furthermore, since each pair of DTMs 
and satellite images has different dimensions, we generated 
256 pixel x 256 pixel tiles from these pairs to train our model. 
In these DTMs, some depth values are recorded as ‘NaN’ due 
to certain anomalies. Therefore, we discard the tiles which have 
these ‘NaN’ values in their DTMs. To achieve better results, we 
normalized the values using a variation of min-max normaliza- 
tion.
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(a) (b)

Figure 3: The Swin Transformer (a) provides detailed, multi-resolution feature maps, capturing more nuanced features from the images. In contrast, the Vision 
Transformer (b) offers a single, less detailed feature map. This makes Swin Transformer more suitable for feature extraction, both locally and globally.

imagenormalized =  image − min val  × 2 − 1 (4)
max val − min val

2.2. Design Choices
In this section, we discuss the major design choices we made 

during the project. We decided to implement our Diffusion 
Model architecture based on the Stable Diffusion architecture. 
However, to adapt the Stable Diffusion architecture, which is a 
text-to-image generation model, for the depth estimation task, 
we had to make a few modifications, including conditioning, 
Variational Autoencoder, and noise scheduler.

2.2.1. Condition for the Diffusion Model
We decided to utilize satellite image input for conditioning 

our model. For this, we had two possible design choices:

1. Use the satellite image directly as a conditioning signal 
(Saxena et al., Feb. 2023).

2. Use a vision transformer to extract features from the satel- 
lite image and use those features as a conditioning signal 
(Duan et al., 2023).

We selected the second method, which has shown better re- 
sults for feature extraction in previous work (Liu et al., 2021). 
The main objective of using a transformer-based approach 
(Yuan et al., 2021), (Chu et al., 2021), (Vaswani et al., 2017) 
as the backbone is their innovative strategy to convert the im- 
age into a sequence of non-overlapping patches when extracting 
features (Liu et al., 2021) facilitating local and global feature 
extraction.

More specifically, we decided to use a Swin Transformer 
backbone as the transformer backbone instead of a Vision 
Transformer used by Liu et al. (2021) because Swin Trans- 
former architecture employs a hierarchical structure of alter- 
nating stages of local and global self-attention mechanisms. 
This design has made the Swin Transformer outperform Vi- 
sion Transformer/ DeiT (Dosovitskiy et al., 2020), (Touvron

et al., 2020) and ResNe(X)t models (He et al., 2016), (Xie et al., 
2017). Initially, the input image is divided into smaller patches 
of 4x4 pixels, which undergo multiple transformer layers to ex- 
tract features at different scales. The resulting feature maps 
are then hierarchically aggregated across stages to generate a 
rich representation of the input image, which includes local and 
global features, in contrast to the Vision Transformer, which 
uses patches of 16x16 pixels and produces feature maps of sin- 
gle low resolution, as shown in Figure 3. Especially, the patches 
of 4x4 pixels in the Swin Tranformer allow the extraction of 
finer details, which are useful in depth estimation (Saxena et al., 
2005b) than the patches of 16x16 in the Vision Transformer. All 
these approaches allow the Swin Transformer to effectively cap- 
ture intricate patterns and relationships within the input data, 
making it suitable for tasks such as image understanding and 
feature extraction.

2.2.2. Variational Autoencoder
We are using a Variational Autoencoder in our model to con- 

vert high-dimensional images into latent space. The Diffusers 
library (Face, 2024) is the go-to library for state-of-the-art Dif- 
fusion Models because of the extensive community support and 
the modularity it provides. The default Variational Autoen- 
coder in the Diffusers library is a relatively complex model that 
accepts a 3-channel input and converts it into a latent signal. 
However, in our case, we only need to convert single-channel 
512x512 images into a 4-channel 64x64 latent signal. There- 
fore, we developed a simple autoencoder that has three 2D con- 
volution layers and three transpose convolution layers. This 
autoencoder helped us increase accuracy and reduce computa- 
tional requirements.

2.2.3. The starting point of the Denoising process
In general, the denoising process of the Diffusion Model 

starts with the noise-added latent signal of the original image. 
The amount of noise added to the original image determines
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the depth image in a single iteration. This approach enables 
real-time depth estimation with entry-level GPUs that have a 
minimum of 6GB memory.

(a) (b)

(c) (d)

Figure 4: A comparison between the original images (a), (c), and the recon- 
structed images (b),(d) by our Variational Autoencoder which is used for con- 
verting pixel image into a latent signal and convert the latent signal back to a 
pixel image

how similar the generated image is to the original image. To 
generate a depth map using a Diffusion Model, we had to de- 
cide on a starting point for our model. Previous work done by 
Saxena et al (Saxena et al., Feb. 2023) used a noise-added, in- 
complete ground truth depth map as the input so that the Diffu- 
sion Model could complete the depth map while going through 
the denoising process. Since we didn’t have such an original 
image, we had to decide on the signal we were going to use 
to start our denoising process. We experimentally checked the 
following starting points for our model:

1. Noise-added edge image latent signal of the satellite image
2. A random noise signal

We started with these two signals and trained our model to 
find which starting signal gave us better results. According to 
our experiment, as shown in Table 2, starting with a random 
noise signal outperformed starting with the noisy edge signal. 
Therefore, to train our model, we decided to use a random noise 
signal.

Starting Point Training loss for 4 epochs
Edge images 0.41988

Random noise 0.3842

Table 2: MSE loss values between predicted noise from the U-Net and the 
actual noise for 4 epochs for 100 DTMs in the training process.

2.2.4. Inference Time steps
The reverse diffusion process of Stable Diffusion Model is 

an iterative process. As the number of iterations increases, both 
the refinement of the generated image and the inference time 
increase. Since one of our main goals is to develop an effi- 
cient model for depth estimation, we have decided to generate

Table 3: Image super-resolution benchmarking results for the General-100 
dataset are presented (Tang, 2016). PSNR, which stands for Peak Signal to 
Noise Ratio, and SSIM, which stands for Structural Similarity Index Measure, 
are used as metrics. The higher the PSNR and SSIM values, the better the re- 
sults.

2.3. Training Architecture

Training the U-Net to accurately predict the noise in a latent 
signal of an image (in our case a depth map) is the primary goal 
of the training process. As in Figure 5, first the Variational Au- 
toencoder will receive the ground truth tiles and convert them 
to a latent signal after using the FSRCNN model for resolution 
upscaling. According to previous works (Grassa et al., 2022), 
we can obtain better depth prediction results by upscaling res- 
olution due to detail sharpening. The reason for selecting the 
FSRCNN model to upscale resolution is that, according to 3, 
the FSRCNN model shows high PSNR and SSIM values with 
a lower inference time. Therefore, we can maintain both the 
accuracy and efficiency of our architecture. While we maintain 
a constant random noise signal as the Zt state of the diffusion 
process, the converted latent signal of the ground truth tiles be- 
comes the Z0 state. We define the the actual noise we should 
predict during the denoising process as:

actual noise = Z0 − Zt (5)

In this case, t stands for a constant timestep that we define, 
which is 1000. Next, we feed the Zt state random noise signal, 
the constant timestep, and the features that were extracted from 
the input grayscale tile using the Swin Transformer to the U- 
Net in order to predict noise. The goal of this denoising process 
is to obtain the Z0 state, which is obtained by removing this 
predicted noise from Zt. We define the loss function for the 
U-Net as:

UNet loss = MSE(actual noise, predicted noise) (6)

where MSE is the mean square error. To reduce the loss be- 
tween the predicted noise from the U-Net and the actual noise 
(Equation (4)), the U-Net will be trained for a number of itera- 
tions in this manner.

Method Avg inference
time in sec 
(CPU)

Avg
PSNR

Avg
SSIM

ESPCN (Shi, 2016) 0.008795 32.7059 0.9276
EDSR (Lee, 2017) 5.923450 34.1300 0.9447
FSRCNN (Tang, 2016) 0.021741 32.2681 0.9248
Bicubic 0.000208 32.1638 0.9305
Nearest neighbor 0.000114 29.1665 0.9049
Lanczos 0.001094 32.4687 0.9327
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Figure 5: MonoGEODepth training architecture: During the training, a satellite image is being used as the conditioning. We start our diffusion process with the 
latent signal corresponding to the ground truth depth image, and use the Variational Autoencoder (VAE) we developed to convert images between pixel space and 
latent space. With the conditioning, we provide a constant timestep value to U-Net to generate the depth image during the denoising process.

2.4. Inference Architecture
A constant random noise signal, represented in Figure 6 as 

Zt, will serve as the starting point during the inference time. 
Here, we use the same constant noise signal that we used during 
the training process. Consequently, the Zt signal and the con- 
stant timestep containing the features that were extracted from 
the input image are used by the denoising U-Net to predict the 
noise. The Z0 signal, which is the latent form of the input im- 
age’s depth map, is then obtained by subtracting the predicted 
noise from the Zt signal. Ultimately, the Z0 signal will be fed 
into the variational auto encoder’s decoder and mapped into the 
pixel space. The final result will be an upscaled 512x512 depth 
map of the original picture.

3. Experiments and Results

We first trained our model for 10 epochs with 100 DTMs and 
further trained it for another 20 epochs with 300 DTMs. The 
loss curves for both the training and validation process are plot- 
ted in Figure 7. We conducted a series of experiments to eval- 
uate our model’s accuracy in estimating monocular depth from 
satellite images. In this section, we first discuss the dataset and 
the evaluation metrics we used, followed by the implementa- 
tion details of our model. We then compare the results from our 
model with the ground truth values. Furthermore, we bench- 
mark our model against the state-of-the-art methods for depth 
estimation from satellite images (Grassa et al., 2022).

3.1. Datasets and evaluation metrics
HiRISE DTMs are digital terrain models made for the Mars 

surface. These models indicate the elevation of a particular 
point using the value of that data point. DTMs are created using

stereo-matching techniques with two images taken from differ- 
ent angles (HiRISE Repository). the pixel resolution of HiRISE 
images varies from 0.25m/pixel to 0.5m/pixel. The terrain mod- 
els can be derived at a post spacing approximately 4 times the 
pixel scale of the input images, resulting in post spacings of 
1m - 2m for DTMs. HiRISE images and DTMs are available 
on the HiRISE website of the University of Arizona (HiRISE 
Repository).

We created a dataset consisting of 983 stereo pairs and DTMs 
using this HiRISE archive. Currently, it is the largest HiRISE 
DTM dataset available for open access. However, we only use 
300DTMs to train our model. To account for the different reso- 
lutions of HiRISE images, we divided them into 256x256 tiles 
for training and validation of our model. Our model takes the 
left stereo image as input and considers the relative depth val- 
ues obtained from DTMs as the ground truth depth values for 
training.

For the evaluation metrics, we use the Root Mean Squared 
Error (RMSE)(Equation 7) and Absolute Relative Error (Equa- 
tion 8) for the HiRISE dataset. These are the metrics used in 
the prior work done by Grassa et al. (2022). In addition to 
those metrics, we also use Squared Relative Error (Equation 
9), RMSE-Log Error (Equation 10), and Delta Error (Equation 
11) to evaluate the results of our model. These five metrics are 
standard evaluation metrics used in prior work. (Eigen et al., 
2014)

RMSE =  1 (g − p)2 (7)
|D| p∈D
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, X

|D| p∈D p g

X

Figure 6: MonoGeoDepth inference architecture: During the inference time, we used the trained denoising U-Net to generate the depth image in latent space based 
on the satellite image conditioning. VAE is used to convert the latent signal into a depth image.

Figure 7: RMSE loss values of training and validation epochs. We trained the 
model for 30 epochs using 300 DTMs. The training loss line plots the RMSE 
losses between the predicted noise from U-Net and the actual noise while the 
testing loss line plots the RMSE losses between the predicted depth image and 
ground truth depth image in each epoch.

Where:

p - predicted depth
g - ground truth
D - set of all predicted depth values

(a) (b)

Abs-Rel =  1 |g − p|
|D| p∈D g

2

(8)
(c) (d)

Figure 8: Comparison of (a) input satellite image, (b) ground truth depth image,
(c) generated depth image by our model, and the (d) pixel difference between 
ground truth and predicted depth images

Sq-Rel =  1  X (g − p) (9)
|D| p∈D g

3.2. Implementation details

RMSE-Log = 1

|D| (log(g) − log(p))2 (10)
p∈D

We use Python with the PyTorch library to train our model. 
Our batch size is 8, and we perform 2 steps for gradient accu- 
mulation. The training process runs for 30 epochs, utilizing theAdam optimizer. The learning rate for training is 5 × e−4.

δt =  1  X "
max

 
g ,  p 

! 
< 1.25t

# 
× 100% (11) Our model is trained using a single RTX 3090 24GB GPU.

A single epoch takes 9 hours to train with 300DTMs and for
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inferencing 500 patches of 256x256 pixels, it takes 35 seconds 
with a rate of 14 tiles per second.

3.3. Comparison of results with the ground truth values
Figure 8 shows a side-by-side comparison between the input 

satellite image, ground truth depth image, predicted depth im- 
age, and the difference between predicted and depth images in 
the pixel space. The red areas in Figure 8b and Figure 8c cor- 
respond to areas with relatively less elevation compared to the 
areas which are plotted in blue. These depth images correspond 
to the satellite images captured from the Oxia Planum site. Ac- 
cording to the images, we can see that even though there is a 
difference between the predicted and ground truth depth images 
(Figure 8d, the model has predicted the relative depths success- 
fully. Figure 9 mirrors the above-mentioned idea since we can 
observe less error in the relative difference between the values 
in latent space (Figure 9e, even though the values in the ground 
truth image and the predicted image (Figure 9f) have consider- 
able differences.

3.4. Comparison to the state-of-the-art
We have selected the SRDiNet (Grassa et al., 2022) model 

as the most comparable previous work for our project. For the 
HiRISE dataset, SRDiNet is the only previous work that uses 
monocular depth estimation techniques. Therefore, we consider 
the SRDiNet model as the state-of-the-art for depth estimation 
for HiRISE satellite images.

Method RMSE Abs-Rel Inference
time (s)

SRDiNet
(Grassa et al., 2022)

0.2011 0.1697 218

Ours 0.2976 0.2288 35s

Table 4: Comparison between models trained on HiRISE dataset. We used Oxia 
Planum site HiRISE images as the validation dataset, which was also used to 
validate the SRDiNET model. To achieve the given inference time of 218, 
SRDiNET used 4 RTX 5000 GPUs while our model used a single RTX 3090 
GPU. SRDiNET model shows better RMSE and Abs-Rel values compared to 
our model. However, our model predicts depth image in significantly less time.

4. Discussion

One of the significant challenges in planetary landform anal- 
ysis is the scarcity of ground-truth depth values (Hargitai et al., 
2015). Training a Diffusion Model also requires a large amount 
of data. In our project, we overcame these problems by using 
a pre-trained model (Face, 2024) for text-to-image generation 
and then fine-tuning the model to generate depth maps using 
satellite images. Furthermore, we increased the dataset size by 
dividing the images into 256 pixel x 256 pixel tiles and applying 
augmentation techniques. This approach allowed us to generate 
a more robust training dataset, improving our model’s perfor- 
mance and generalization capabilities.

We have performed experiments to compare the performance 
of our model with the state-of-the-art model (Grassa et al.,

2022) using the Oxia Planum site HiRISE images as the val- 
idation dataset. The main objectives of our model are (a) to 
generate depth maps with faster inference times (b) to explore 
the benefits of the denoising capability of Diffusion Models 
and ViT for monocular depth estimation. As a result, we have 
developed a model that demonstrates superior performance in 
time-sensitive scenarios (Table 4). For processing a satellite 
image with 500 tiles, our model requires only approximately 
35 seconds using a single Nvidia RTX 3090 GPU, compared to 
218 seconds for the SRDiNet model with 4 Nvidia RTX 5000 
GPUs. This equates to an impressive processing rate of approx- 
imately 14 tiles per second per GPU. Consequently, our model 
is adept at estimating depth in real-time for small areas, even 
under stringent time constraints, while demanding fewer com- 
puting resources.

Even though the model performs well in achieving faster in- 
ference time, a small loss can be observed between the pre- 
dicted depth image and the ground truth depth image, as plot- 
ted in Table 9f. Compared to Figure 9f, Figure 9e shows much 
fewer errors in the difference between the ground truth val- 
ues and the predicted values. This difference can be mitigated 
through a more accurate Variational Autoencoder. In addi- 
tion, since we normalize absolute depth values in ground truth 
DTMs into the [-1,1] scale in the preprocessing stage, our cur- 
rent model can estimate depth in pixel intensities. To estimate 
relative depth, we have to retrain the model without dividing it 
by the depth range in the preprocessing stage.

Furthermore, as shown in Table 2, contrary to intuitive as- 
sumptions, initializing the denoising process with random noise 
instead of edge images leads to superior denoising outcomes. 
This finding suggests that the random noise signal serves as a 
more effective starting point for the denoising process. Addi- 
tionally, although traditional Conditional Diffusion Models uti- 
lize noise schedulers to control the addition and removal of 
noise, our architecture omits this component for the sake of 
time efficiency. However, future modifications could incorpo- 
rate a noise scheduler, leveraging increased GPU power to en- 
hance performance further.

5. Dataset Contribution and Source Code

As a contribution of this paper, we have created the largest 
Digital Terrain Model (DTM) dataset of Mars, extending the 
previous work done by (Grassa et al., 2022). This dataset in- 
cludes a stereo pair of satellite images and the respective digital 
terrain models of those images. We collected 983 stereo pairs 
and DTMs from the HiRISE archive for this dataset, compared 
to the 679 stereo pairs and DTMs in the (Grassa et al., 2022). 
This dataset will be useful for training any machine learning 
model in its domain.

Furthermore, we have developed an open-source visualiza- 
tion tool to convert a given satellite image into a depth image. 
This tool can be extended as a real-time depth estimation tool, 
considering its lower inference time. Our dataset and the
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(a) (b) (c) (d)

(e)

(f)

Figure 9: Difference between predicted and ground truth values. (a) Input satellite image, (b) ground truth depth image, (c) generated depth image by our model,
(d) pixel difference between ground truth and predicted depth images, (e) predicted and ground truth values of a selected part of the latent signal, and (f) predicted 
and ground truth depth values along the red color line in the image (a). The blue color dots in images (a) - (d), and (f) represent the highest points of the ground 
truth depth image, while the yellow color dots in images (a) - (d), and (f) represent the highest points of the predicted depth image.
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source code for our application are available at the fol- 
lowing  link: https://monogeodepth.github.io/ 
mono-geo-depth/.

6. Limitation of the Study

Our study is limited by the use of a single-step Diffusion 
Model for monocular depth estimation, meaning that only one 
iteration is performed in both the forward and backward diffu- 
sion processes. This approach prioritizes low inference time, 
essential for time-critical scenarios like real-time Mars satellite 
image analysis. However, this results in comparatively lower 
accuracy. While increasing the steps in the diffusion process 
could improve accuracy, it would also significantly increase in- 
ference time, conflicting with our focus on efficiency. Future 
research should explore methods to better balance speed and 
accuracy.

7. Summary and Conclusion

We introduce the MonoGEOdepth model, a novel approach 
that addresses the challenge of generating high-quality depth 
maps from single satellite images of planetary landforms. 
Leveraging advanced feature extraction capabilities through 
the Swin Transformer, coupled with a Conditional Diffusion 
Model, our method significantly enhances depth estimation ef- 
ficiency while overcoming the limitations of traditional depth 
estimation methods on celestial bodies like Mars. By address- 
ing computational and data-related challenges and improving 
inference times, our model demonstrates the potential for ap- 
plications in remote sensing and planetary geosciences. Exper- 
imental results indicate that the model performs better in time- 
sensitive scenarios, and further training of the U-Net and Varia- 
tional Autoencoder can improve the performance even further. 
Through scalable and efficient depth perception from limited 
single-image inputs, our work contributes to advancements in 
both computer vision technology and the exploration of Martian 
topography, offering valuable insights for tasks ranging from 
landing site selection to detailed geological studies.
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