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Introduction: Earth’s serpentine zones have been
investigated as analogs to those on Mars [1, 2],
especially given geologic conditions for habitability
as well as insight on paleo-magnetism and planetary
evolution [3]. However, field sites are often biased by
past works (e.g., mentor-mentee generational
transfer) with only limited mapping independent of
prior knowledge. We consider a case study of
independent mapping, along Sri Lanka’s Mars-analog
serpentine zone, at the litho-tectonic boundary
between the Highland Complex and the Vijayan
Complex (HC-VC boundary) [4]. The currently
identified serpentinite field sites are limited to 6
discontinuous localities [4], of which only two
contain public geo-specific coordinates [5].

To support further exploration of the serpentine
zones of Sri Lanka, we propose Serp-Seg, a
Python-based system to automatically detect
previously unidentified serpentine zones along the
HC-VC boundary. The system primarily contains a
machine learning model which we’ve calibrated
using previously identified serpentine landscapes
(i.e., dominated areally by serpentinites and derived
soils). The scripts required to use or calibrate this
model shall be packaged into a Python library known
as serp-seg before archival at NASA’s Github
repository.

Our system is expected to significantly reduce the
time spent by geologists on localizing sampling sites
for serpentine-derived soil. Furthermore, the system
can be used for the detection (localizing on a given
object on an image [6]) and segmentation (classifying
the pixels of an image [7]) of any geological zones of
interest, for which the number of labeled samples that
can be used for training are very limited (a.k.a.
few-shot [8] segmentation). Thus, it can also have
resource prospecting utility for economically
valuable minerals, before in situ sampling and
analysis.

Dataset: The dataset used is based on the
Sentinel-2 satellite imagery. The highest resolution
bands of the dataset are of a resolution of 10m per
pixel.

For calibrating our system, the frames of the
Sentinel-2 dataset that cover the HC-VC boundary
are divided into images of 256x256 pixels. Of these,
the images of regions with in-situ verified serpentine
exposure are separated, labeled, and used for training
the model. Accordingly, this dataset consists of 40
labeled images containing serpentine sites and 1470
unlabeled images of candidate sites (the rest of the
HC-VC boundary).

Methodology: There are two main indicators
that can be used to identify the presence of serpentine
zones: (a) infrared reflectance spectral features and
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(b) the change in vegetation density when moving
across a serpentine zone boundary [4], due in part to
the common toxicity of serpentine soils to vegetation
[9]. Details on both these indicators can be
approximately inferred from the bands of the
Sentinel-2 dataset (e.g.: bands 4 and 8 for obtaining
the NDVI, bands 4 and 3 for Ferric ions, and bands 3,
4, 8, and 12 for Ferrous ions).

Our task is to identify whether a given image
contains serpentine exposures and if so, their spatial
distribution. To do so, we use a machine learning
model known as DCAMA [10] (Figure 1). This
specific model was chosen due to its strength in
working with very few labeled images. Due to having
just two geo-specific coordinates and six geological
locations, the number of images that can be
confidently labeled is highly limited for Lanka’s
serpentine zone.

DCAMA works by mapping the visual
characteristics of the serpentine-rich landscapes in the
labeled images to those of an unlabeled image (if
any). To identify these visual characteristics, the
image is passed through a secondary model known as
an encoder [11]. The encoder is responsible for
creating a numerical representation of the images,
which are then used by DCAMA for segmenting.

To further improve the performance of the model,
we replace the encoder of DCAMA with a model
(ResNet50 [12]) which has been pretrained on the
So2Sat [13, 14] landcover classification dataset.

Calibration: To calibrate the system, we feed the
model with 6 labeled images along with labels of 5 of
the images (5-shot segmentation). The model then
predicts a label for the remaining image. It is then
calibrated against the actual label (Figure 2).

We calibrate the model for 1000 iterations over
the entire dataset. This process takes approximately
one hour on a computer with 16 GB of RAM and a
GTX 1060 6GB GPU.

Evaluation: To evaluate the performance
improvement of the DCAMA model, we compare it
against a U-Net [15] model with the previously

mentioned ResNet50 model as the encoder. We test
the models both with and without the pretrained
backbone to evaluate their contributions.

Both the models were evaluated using the Jaccard
similarity index (a.k.a. intersection over union / IoU)
and were cross-validated using 5 folds. The Jaccard
similarity index is calculated by dividing the total
number of correctly identified serpentine zone pixels
by the total number of pixels in the union of the
predicted serpentine-dominated pixels and the actual
serpentine-dominated pixels (i.e., on an areal basis).

Comparison against regular approaches: It can
be seen by the below metrics that the proposed
approach improves over the regular segmentation
approaches.

Table 1. Summary of the IoU scores of the different
experiments, with higher score indicating greater
accuracy.

ResNet50 ResNet50
with
pretrained
encoder

DCAMA DCAMA
with
pretrained
encoder

41.4 50.2 44.14 61.2

Outcome: Finally, we ran the model on the 1470
unlabeled images. At the specified resolution, this
covers approximately 9630 km2 of land along the
HC-VC boundary. Running our program on this
entire dataset (using a computer with 16 GB of RAM
and a GTX 1060 6GB GPU) takes 4m 45s in the
5-shot scenario (feeding 5 labeled images with the
unlabeled image) and 12m 55s in the 10-shot scenario
(feeding 10 labeled images with the unlabeled image;
more accurate). In other words, it takes 11.6 seconds
per image in the 5-shot scenario and 31.6 seconds per
image in the 10-shot scenario.
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