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Abstract

Segmentation of curvilinear structures in satellite images is a crucial task in 
various domains, including planetary science and agriculture, but is limited 
by computational resource constraints. To address this challenge, we pro- 
pose a novel Resource Efficient Satellite Image Segmentation Tool (RESIST) 
that preserves both global information and pivotal image features. RESIST 
employs parallel segmentation models with different patch sizes to capture 
contextual information and fine details. Then it combines their predictions 
to minimize false detections. Furthermore, RESIST employs postprocessing 
layers that take advantage of the continuous nature of curvilinear structures 
to enhance segmentation accuracy. Experimental results on Martian 
satellite images demonstrate that RESIST outperforms state-of-the-art models 
in terms of accuracy and performance, making it accessible to researchers with 
limited computational resources and advancing image segmentation 
techniques for various applications.

Keywords: Deep Learning, Computer Vision, Satellite Image 
Segmentation, Semantic Segmentation, Martian Inverted Channel 
Segmentation, Curvilinear Structure Segmentation, Inverted Channels

1. Introduction

Satellite image segmentation is considered one of the key research areas in 
both foundational domains like planetary science and industrial domains like
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agriculture. To obtain segmentation results with high accuracy, supervised 
deep neural network-based models have to be used. Satellite imagery data 
are often found in high resolution. Hence, the processing and training of 
these satellite images is restricted by computational resource constraints.

To overcome this challenge, downsampling of the images or patch ex- 
traction technique is commonly used. However, these approaches have their 
drawbacks. Downsampling an image results in losing pivotal image feature 
details, and patch extraction causes a loss of global information. Employ- 
ing either of these strategies alone will yield low accuracy in the resulting 
segmentation.

As a solution, we propose a novel Resource Efficient Satellite Image Seg- 
mentation Tool (RESIST) that preserves both the global information and 
the pivotal image features. The complete end-to-end pipeline of this tool 
was developed for segmenting inverted channels in satellite images of Mars. 
Topographically inverted channels on Mars are continuous positive relief 
channels that form sinuous patterns and provide compelling evidence of early 
fluvial activity [1, 2]. However, manual annotation of these channels is 
laborious and has a high likelihood of inconsistencies (i.e., low replicability) 
across researchers. Automating this mapping process can support ongoing 
explorations in regions such as Aeolis Dorsa [2]. In this context, we 
presented an abstract at the Lunar and Planetary Science Conference 
(LPSC) 2023, organized by the Lunar and Planetary Institute and NASA, with 
a new automated approach for inverted channel segmentation using deep 
learning
[3].

RESIST employs two parallel segmentation models, using image patches 
of two different sizes as input. Larger patches capture contextual 
information, while smaller patches capture fine details. The predicted results 
from both models are combined to minimize false detections of inverted 
channels. These patches are then stitched together to reconstruct the 
original image layout. To validate the curvilinear structure, the bounding 
boxes are drawn around the identified inverted channels and stretched to 
detect over- lapping segments. Non-overlapping segments are discarded as 
they do not preserve the curvilinear structure of inverted channels. 
Discontinuities be- tween inverted channel segments are connected, and 
missed interior regions are corrected to obtain the final segmentation results, 
as shown in Figure 1c. The main contributions of the project are listed 
below.
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1. A context-enhanced segmentation approach, which achieves higher ac-
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curacy with minimal computational resource requirements.
2. An extended bounding box overlap approach, a gap-filling layer, and an 

interior region-filling layer as postprocessing layers, which significantly 
improve the segmentation accuracy in curvilinear structures.

3. A novel labeled dataset to train and test models for inverted channel 
segmentation of Martian satellite images.

The segmentation results of RESIST were compared with state-of-the-art 
segmentation models using three evaluation metrics: F1 score, Jaccard score, 
and AUC score. The comparison revealed that RESIST outperformed the 
state-of-the-art models, producing significantly better results. This suggests 
that RESIST is highly effective in accurately segmenting inverted channels 
in satellite images of Mars, surpassing existing approaches in terms of seg- 
mentation accuracy and performance.

The practical implications of RESIST include its accessibility to researchers 
with limited computational resources, enabling accurate segmentation results 
in fields such as planetary science and agriculture. The use of parallel 
segmentation models with different patch sizes and validation of curvilinear 
structures using stretched bounding boxes in RESIST has the potential to 
advance image segmentation techniques, opening doors for applications in 
remote sensing, geospatial analysis, and computer vision.

2. Related Work

The automation process of annotating inverted channels on Mars using 
satellite images has received limited exploration. Therefore, there is a lack 
of specific literature on the automatic segmentation of inverted channels in 
satellite images of Mars. However, many researchers have carried out work 
on the detection and segmentation of other geological features within the 
Martian landscape [4].

Y. Wang et al. have developed an automatic object detection model to 
identify dark slope streaks on Mars which take the shape of dark thin stripes
[4] or fans. Using gradient and regional grayscale information, the regions of 
interest are identified. Local binary patterns are calculated for the extracted 
regions. Finally, they are fed into a DDS classifier implemented using the 
AdaBoost machine learning algorithm.

In the domain of satellite image classification and segmentation, many 
works have been carried out for the satellite imagery of Earth.  Detecting
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Figure 1: Segmentation results obtained by the model. (a) HiRISE image; (b) Ground 
truth mask; (c) Final Prediction

water bodies from satellite images is considered to be crucial in improving 
and managing urban water systems to solve environmental issues and allow 
timely flood protection planning [5]. Utilization of deep convolutional neural 
network models has been used for water body detection during the last decade 
[6]. A novel effective deep convolutional neural network model has been 
proposed by Kunhao Yuan et al. for water body segmentation using satellite 
images, which is developed to extract features from multispectral imagery in 
order to enhance the performance of the process [7].

L. Rubanenko et al. have developed a model using a Mask R-CNN that 
can automatically segment crescent-shaped sand dunes found on Earth and 
Mars called barchan dunes [8]. The input satellite images are first converted
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into a feature map by feeding it through a backbone neural network. Next, 
the feature map with the highlighted objects is passed through a region 
proposal network. Finally, the regions of interest are passed through an 
ROI align algorithm, and the information is sent through several layers with 
varying loss functions to segment detected objects.

Since the morphology of inverted channels resembles curvilinear structures, 
our proposed model can be inspired by work on medical image seg- mentation, 
especially retinal vessel segmentation. V. Cherukuri et al. have proposed a 
regularized deep network for vessel segmentation of retinal im- ages [9]. This 
network domain consists of two parts. First, a representation network is 
trained to identify curvilinear features in retinal images. Then a task 
network uses the representation layer features to identify the features at a 
pixel level. Finally, the filters of the representation layer are optimized using 
the task network parameters. The authors also propose to implement a 
multi-scale version of the representation layer using filters that can handle 
varying thicknesses of retinal vessels.

Among the retinal vessel segmentation models, the U-Net model proposed 
by Ronneberger et al. introduced the feature map jump connection technique 
and was able to produce promising results [10]. This proposed U-net model 
is extensively used in the domain of medical image segmentation. In the 
advancement of automated medical image segmentation, a substantial 
number of optimized models based on U-net were later introduced [11]. The 
top per- forming two state-of-the-art models, basic U-Net [10] and Deform 
U-Net [12] which is an upgraded version of U-Net, exhibit some noticeable 
flaws when generating results. These models get confused about the vessel 
boundary or overlook the retinal vessels around the intersection points due 
to noise in the images [13]. Liangzhi Li et al have proposed a model named 
IterNet to overcome this issue, where a standard U-Net uses the raw input 
images to analyze and map them into a rough segmentation map. Then to 
optimize the already generated segmentation map, the authors integrate an 
iteration of mini U-Nets which use the output of the second last layer of its 
precedent model as its input [13]. The IterNet model has been able to 
generate better results compared to the previous state-of-the-art models 
for the commonly used datasets in the field of retinal vessel segmentation 
[13].

L. Mou et al. proposed one such novel segmentation network (CS2-Net)
that consists of a self-attention mechanism in both the encoder and decoder to 
extract rich hierarchical representations of curvilinear structures [14]. Apart 
from encoder and decoder modules, the methodology uses a “ Channel and
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Spatial Attention Module (CSAM)”. Features extracted from the input data 
by the encoder are fed to the CSAM. CSAM generates channel-spatial focus- 
aware expressive features. To capture more boundary information and 
segment curvilinear structures, the authors have used a 1 x 3 and 3 x 1 
convolutional kernel. The decoder finally reconstructs the curvilinear features 
to produce segmentation results.

In [15], C. Guo et al. proposed a network named Spatial Attention U- 
Net. The SA-UNet is considered a lightweight network, and it doesn’t require 
thousands of annotated training images. Data augmentation was done to 
efficiently use the available annotated images. A spatial attention module 
was introduced to the basic U-Net. The attention map was inferred across 
the spatial dimension. Then the attention map was multiplied by the feature 
map to refine adaptive features. Test results showed that the proposed model 
outperformed state-of-the-art models like DEU-Net, Vessel-Net, and AG-Net.

S.A Kamran et al. claim that these U-Net based segmentation meth- 
ods do not perform well in extracting macrovascular structures as they lose 
resolution in the encoding process and the loss cannot be recovered in the de- 
coding process [16]. Hence, they propose the generative adversarial network, 
named RV-GAN which uses a pair of generators and a pair of discriminators. 
Plus, for adversarial training of their model, they introduce a novel weighted 
feature matching loss with inner and outer weights to combine with 
reconstruction and hinge loss. The authors have tested the model against 
a few U-Net based models and a few GAN models using CHASE-DB1, 
DRIVE, and STARE datasets.

In the field of biomedical image analysis, Ambegoda et al. introduced a novel 
approach for segmenting neuron membranes in 2D electron microscopy images by 
incorporating local topological constraints [17]. The proposed method takes pixel-
wise membrane probability maps as inputs and formulates the segmentation task 
as an edge labeling problem on a graph. The authors assert that their proposed 
method enhances the accuracy of neuron boundary segmentation compared to 
conventional segmentation approaches by effectively addressing gap completion and 
minimizing topological errors. When considering works done to handle high-
resolution images in segmentation tasks, Y. Wang et al. propose a resource-
efficient method for segmenting high-resolution volumetric microCT images [18]. To 
reduce memory requirements and processing time, the authors use a combination of 
3D convolutional neural networks and a novel memory-efficient data sampling 
strategy. The proposed method involves training a small network on a downsampled 
version of the data and using it to perform initial segmentation. The segmentation 
results are then used to train a larger network on a higher- resolution version of the 
data, enabling the segmentation of the entire image while keeping memory usage low. 

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5229258

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



8

This approach proves to be highly beneficial when dealing with extensive image datasets 
that exceed the memory capacity of a typical computer system equipped with relatively 
limited GPU and RAM resources.
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3. Dataset

To train the segmentation models used in RESIST, a novel dataset was 
prepared due to the lack of a labeled dataset of inverted channels in satellite 
images of Mars. The dataset consists of 23 HiRISE images of the Martian 
terrain from two different regions; Aeolis Dorsa and Miyamoto Crater. The 
images are 2048 pixels in width and in the range of 2836-10624 pixels in 
height. The file size of an image is in the range of 2-10 MB. The dataset 
was annotated using the cloud-based image annotation platform Dataloop 
AI [19], creating masks for each image to distinguish the inverted channels 
as a separate class from the background.

Although the number of original images is small, they contain a wealth 
of information covering vast areas of Mars. To fully utilize this data, we 
divided the images into smaller sections for model training. Two subsets 
were created: one with 256x256 pixel images, resulting in 3664 samples, 
and another with 512x512 pixel images, producing 924 samples. Training 
the models on these subsets allowed us to extract valuable features from the 
terrain and improve the model’s ability to generalize effectively. More details 
on how these subsets were created are provided in the preprocessing section 
under the methodology.

4. Methodology

4.1. Preprocessing
In this study, we aimed to build a segmentation model capable of 

accurately identifying the Inverted Channel class in satellite images. To 
enhance the effectiveness of model training, we applied various data 
preprocessing strategies and augmentation techniques, ensuring that the 
available data was used to its fullest potential.
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Figure 2: Effect of histogram normalization. (a) Grayscale HiRISE image; (b) Histogram 
normalized HiRISE image

First, we applied histogram normalization, which is a common technique 
used in image processing that involves adjusting the brightness and contrast 
of an image to improve its visual quality. This technique helps to remove 
variations in the illumination of the image, resulting in a more consistent 
and standardized image dataset. We applied histogram normalization to our 
grayscale images to reduce the impact of lighting variations and enhance the 
contrast of the images, as shown in (Figure 2).
Furthermore, the original images in the dataset were quite large, making them 
challenging to handle without access to high-performance computing resources. To 
address this issue, we divided each original image into smaller image patches of a 
manageable size. Specifically, we created two separate datasets, each containing 
image patches of different sizes. The first dataset comprised image patches with 
dimensions of 256x256, while the second dataset contained image patches with 
dimensions of 512x512.
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Figure 3: Architecture of the data preprocessing layer.

Our approach was based on context enhanced segmentation, which means 
that we aimed to incorporate additional information about the surrounding 
area of each pixel to improve the accuracy of our segmentation results. By 
generating two separate datasets with different image patch sizes, we could 
optimize our training process and effectively leverage the available data to 
achieve robust and accurate segmentation results.

Class imbalance is a common issue in machine learning, and our dataset 
was no exception. Specifically, there was a significant class imbalance 
between the Inverted Channel class and the Background class in each 
satellite image.

To address this issue, we employed a two-part approach to create a 
balanced dataset of 256x256 image patches. First, we divided the original 
dataset based on the percentage of Inverted Channel class presence in each 
image patch. Specifically, we extracted image patches with more than 5% 
Inverted Channel class presence and applied augmentation techniques such as 
random rotation and additive Gaussian noise to expand the dataset. Mean- 
while, image patches with less than 5% Inverted Channel class presence were 
randomly undersampled to reduce the imbalance.

After this process, we combined both parts of the dataset to create a final 
dataset of 256x256 image patches. Notably, the count of image patches with 
more than 5% Inverted Channel class presence (1284 image patches) was
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equal to the number of image patches with less than 5% Inverted Channel 
class presence (1284 image patches). As a result, the final dataset was not 
biased towards either class and was suitable for training a robust and accurate 
segmentation model.

Overall, our approach allowed us to maximize the amount of information 
available in the data and improve the effectiveness of our segmentation model 
by addressing the class imbalance issue in our dataset. By creating a balanced 
dataset, we could train a model that was equally effective at classifying both 
the Inverted Channel class and the Background class.

Our objective for the 512x512 patch dataset was to train a model that 
would perform well in real-world scenarios where the Inverted Channel class 
is significantly underrepresented compared to the Background class in satellite 
images. However, we also wanted our model to learn all the important 
features of the Inverted Channel class.

To achieve this objective, we followed a similar approach with the 256x256 
dataset. We divided the dataset into two parts based on a 5% threshold 
for the presence of the Inverted Channel class in each image patch. For 
the image patches above the threshold, we used more data augmentation 
techniques such as random rotation, additive Gaussian noise, and flipping 
to create a larger and more diverse set of training examples. By applying 
these techniques, we aimed to improve the model’s ability to recognize the 
important features of the Inverted Channel class.

Unlike our approach with the 256x256 dataset, we did not use 
undersampling in this case. We wanted our model to be trained on a 
dataset that accurately reflects the class imbalance in real-world scenarios, 
so we kept all the image patches with less than 5% Inverted Channel class 
presence. By doing so, we ensured that our model learned to identify the 
Inverted Channel class even when it was a minority class in the image.

Finally, we combined both parts of the dataset to create a final 512x512 
image patch dataset that contained a total of 1488 images. By following 
this approach, we were able to train a segmentation model that could 
accurately classify both the Inverted Channel class and the Background class in 
real-world satellite images, even when the Inverted Channel class was under- 
represented (Figure 3).

4.2. Context Enhanced Segmentation
The two datasets of different patch sizes were employed to train two 

separate models while keeping the aforementioned objectives at the forefront
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Figure 4: Architecture of the Context Enhanced Model.

of our approach. A Context Deprived Model was trained using the 256x256 
patch dataset, and a Context Extended Model was trained using the 512x512 
patch dataset. Figure 4 illustrates the high-level architecture of the Context 
Enhanced Model, offering a comprehensive overview of the system’s design 
and the integration of its components.

4.2.1. Context Deprived Model
The dataset used for this model consists of images that are 256x256 in 

size. These images have a limited amount of contextual information about 
the overall satellite image. Additionally, the model was optimized to perform 
well on the Inverted Channel class.

To construct the model, we employed an ensemble approach by combining 
two distinct models: U-Net and IterNet. We experimented with several 
segmentation models and found that U-Net and IterNet consistently 
outperformed the others in accurately identifying curvilinear structures in 
Martian satellite images. The IterNet architecture is an extended variation 
of the U-Net architecture. In a standard U-Net, input images are processed to 
create an initial segmentation map, which is then refined to improve 
accuracy. In IterNet, multiple mini U-Nets are used iteratively, with each mini 
U-Net taking the output of the second-to-last layer of the previous mini U-Net 
as input and generating a more accurate segmentation map. The ability of 
these two models to capture fine-grained details and maintain spatial 
consistency made them the most suitable choices for our task.
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For the model training, we used a custom loss function called “Weighted- 
FocalDiceCELoss” that combines both the Dice Loss and the Focal Loss to 
address class imbalance issues and improve segmentation performance. The 
function combines the two losses using a weighted sum, where the Dice Loss 
is weighted at 70% and the Focal Loss is weighted at 30%.

The Dice Loss[20] is a similarity-based loss function that measures the 
overlap between the predicted segmentation map and the ground truth seg- 
mentation map. It is an effective loss function for segmentation tasks as it 
is sensitive to both false positives and false negatives. However, it does not 
directly address the issue of class imbalance in the dataset.

In contrast, the Focal Loss[20] is a variant of the Binary Cross-Entropy 
Loss that incorporates increased weights for misclassified examples, thereby 
achieving a more balanced impact of each class on the overall loss function. 
This is especially important in the case of class-imbalanced datasets, where 
the model might have a tendency to overfit the majority class.

By combining the two losses, we get the advantages of both. The Dice 
Loss helps to ensure that the predicted segmentation map is accurate and 
similar to the ground truth segmentation map. The Focal Loss, on the other 
hand, helps to balance the influence of each class on the overall loss, making 
the model less biased towards the majority class. This combination helps to 
create a more effective training signal for the model and can lead to better 
segmentation performance, especially when dealing with class-imbalanced 
datasets.

Following the completion of training, we used a testing dataset of 256x256 
patches to evaluate the efficacy of our model. The testing dataset was 
input into the model, generating predictions for each patch. We specifically 
sought to prioritize the identification of the Inverted Channel class, by 
taking the union of the two models: U-Net and IterNet. This ensured that 
the model would be biased towards predicting inverted channels even when 
the probability of this class was low.

After generating predictions for all patches, we then stitched them together 
to reconstruct the segmentation in the original size of the satellite image. The 
primary aim of this segmentation was to minimize the number of false 
negatives while simultaneously favoring positive results. By prioritizing the 
detection of inverted channels, we hoped to improve the accuracy of our 
model and reduce the risk of missing important features. The architecture 
diagram of the context deprived model is represented in Figure 5, which 
portrays the system’s underlying components and their interactions,
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elucidating the model’s design and functionality.

Figure 5: Architecture of the Context Deprived Model.

4.2.2. Context Extended Model
The dataset comprising 512x512 satellite images provided significantly 

more contextual information than the 256x256 image patches (4x times higher 
context). Our goal was to build a model that minimizes false positives while 
maintaining a high true positive rate. This approach enabled the model to 
accurately predict the fundamental outline of the inverted channels.

For the model, we employed a probability-voted ensemble approach by 
combining U-Net, SA-UNet, and Attention U-Net. We tested multiple 
models and selected these three based on their superior performance in 
segmenting curvilinear structures.

Attention U-Net is an enhanced version of U-Net that integrates attention 
mechanisms to improve segmentation accuracy. The attention mechanism 
allows the network to focus on the most relevant regions of the input image, 
making it particularly effective for segmentation tasks. The architecture 
consists of an encoder network that extracts features from the input image 
and a decoder network that reconstructs the segmentation mask. The 
attention mechanism is applied at multiple levels of the decoder, enabling 
the net- work to selectively emphasize important features and improve 
segmentation precision.

The SA-UNet extends the U-Net by adding a spatial attention module 
to the encoder network. The spatial attention module uses the feature maps 
from the encoder to learn a set of attention maps that highlight the relevant
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regions of the image for segmentation. The attention maps are then used to 
weigh the feature maps before they are passed to the decoder network.

For the model, we used a custom loss function called ”WeightedFocalDice- 
CELoss” that combines the Dice Loss, Focal Loss, and Cross-Entropy Loss. 
The Dice Loss component is used to measure the overlap between the 
predicted segmentation masks and the ground truth masks. The Weighted 
Dice Loss in this function uses a weighted average of the Dice Loss scores 
for the foreground (inverted channel) and background (non-inverted 
channel) classes. This loss helps to ensure that the model produces 
accurate and precise segmentation.

The Focal Loss component is designed to address class imbalance is- 
sues in the dataset. In many segmentation tasks, the foreground object 
(inverted channel) is much smaller in size compared to the background (non- 
inverted channel), which can lead to class imbalance. The Focal Loss applies 
a weighting factor to the loss function that increases the contribution of 
hard-to-classify examples, thereby improving the model’s ability to handle 
imbalanced datasets.

The Cross-Entropy Loss[20] component is used to penalize misclassifications 
between the predicted and ground truth masks. This loss measures the 
difference between the predicted segmentation masks and the ground truth 
masks using the Cross-Entropy Loss function. This loss is embedded to 
penalize misclassifications.

The overall loss function is a combination of these three loss components, 
where the Weighted Dice Loss is given the highest weight (50%), followed 
by Focal Loss (30%), and Cross-Entropy Loss (20%). The loss function is 
designed to improve the model’s ability to accurately segment the target 
object while minimizing false positives.

After the completion of the model training, we evaluated its effectiveness 
on a testing dataset comprising 512x512 image patches. We used the model 
to generate predictions for each patch, with the specific objective of reducing 
the false positive rate. After obtaining predictions from the U-Net, SA-UNet, 
and Attention U-Net models, we employed a probability voting ensemble 
approach to combine them and generate the final prediction. Subsequently, 
we stitched together all the predictions for the test patches to reconstruct the 
segmentation in the original image size. The primary aim of this model was to 
minimize the number of false positives while maintaining a high true positive 
rate. Consequently, the model was expected to provide a basic outline of the 
Inverted Channel class as the prediction. Figure 6 outlines the architectural
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diagram of the context extended model.

Figure 6: Architecture of the Context Extended Model.

4.2.3. Context Enhanced Model
In our efforts to optimize the performance of our image segmentation 

model for segmenting inverted channels, we recognized the trade-off between 
patch size and contextual information. Therefore, we designed two separate 
models, each trained on image patches of different sizes. The first model was 
trained on lower-sized patches, which provided less contextual information 
but proved effective at reducing the false negative rate. On the other hand, 
the second model was trained on higher-sized patches, providing 4 times 
the amount of contextual information compared to the first model, and was 
successful in reducing the false positive rate.

To achieve the best possible results, we employed a context enhanced 
segmentation technique that combined the strengths of each model while 
minimizing their individual weaknesses. This allowed us to achieve a higher 
level of accuracy in segmenting inverted channels while reducing both false 
positive and false negative rates.

In the context of enhanced segmentation, we aim to improve the accuracy 
of the segmentation prediction obtained from a satellite image by using both 
context deprived, and context extended models. The process involves using 
the prediction of the context deprived model as the base, and the prediction 
of the context extended model as a guide.

To achieve this, we iteratively select a 64x64 kernel from the prediction 
of the previously trained context deprived model (6.25% of the trained patch 
size). For each instance, we mapped it to the context extended model and
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extracted an extended kernel ((3x64)x(3x64)) from the prediction of that 
model.

If the 64x64 kernel from the base has Inverted Channel class pixels inside 
the selected kernel; we check whether the Inverted Channel class is present in 
the extended kernel. If it is present in the extended kernel, we do not make 
any changes to the base prediction. However, in the event that the extended 
kernel does not include the Inverted Channel class, we proceed to remove the 
inverted channel-marked pixels within the kernel of the base prediction.

After iterating over the entire image, we can generate a segmentation 
with fewer false positives while maintaining the true positives in the base 
prediction. Our approach demonstrates the importance of balancing 
contextual information and patch size in image segmentation and highlights 
the benefits of combining multiple models to achieve optimal results.

4.3. Postprocessing

Figure 7: The flow of the postprocessing layer.

The restricted size of our dataset and the presence of ambiguities in 
identifying the inverted channels posed a significant challenge in our project. 
To address this issue, we incorporated a series of postprocessing layers to im- 
prove the accuracy of the segmentation process. The primary postprocessing 
layer that we employed was the extended bounding box overlap technique, 
which helped to refine the segmentation results by improving accuracy. In 
addition to this, we also used several other postprocessing layers to fine-tune 
the segmentation results. Figure 7 shows how the proposed postprocess- 
ing layer works, highlighting its components and how they work together to 
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achieve its overall function.
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Overall, our approach was effective in enhancing the accuracy of the seg- 
mentation process and overcoming the challenges posed by the limited size 
of our dataset and the ambiguities in identifying inverted channels. This 
methodology can be extended and applied to other similar projects to 
overcome similar challenges.

4.3.1. Extended Bounding Box Overlap
In our project, we were tasked with segmenting inverted channels from 

satellite images. By capitalizing on the curvilinear and continuous nature 
of inverted channels, we were able to exploit their characteristics to success- 
fully eliminate false positives in the segmentation process using the following 
approach.

Our approach involved initially identifying the contours predicted as in- 
verted channels and marking their boundaries. Next, we created separate 
bounding boxes for each individual segment and extended them in the di- 
rection of their length. This extension was accomplished by multiplying the 
bounding box’s width by a ratio of the image height to its width, enabling 
us to extend each bounding box based on its length.

We then selected the longest bounding box and marked it as an inverted 
channel segment. We repeated this process, identifying additional bounding 
boxes overlapping with the previously marked inverted channel segment and 
marking them as inverted channel segments as well. This iterative process 
continued until no additional bounding boxes were found as inverted 
channel segments. Finally, we eliminated all pixels within the bounding 
boxes that were not identified as the Inverted Channel class, while 
preserving the remaining inverted channel pixels. This technique significantly 
improved the accuracy of the segmentation by removing a higher number of 
false positives. By leveraging the unique curvilinear and continuous structure of 
inverted channels, we were able to develop an effective and efficient 
approach to accurately segment them from satellite images.

4.3.2. Morphological Operations
To address the issue of false negatives in our model, we integrated several 

morphological operations into our pipeline. First, we applied a median filter 
with a 10x10 kernel size immediately following the bounding box overlap 
layer. This helped to remove noise from the image and smooth out any 
rough regions, reducing the number of false positives.
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Next, we applied a dilation operation with a 5x5 kernel for 3 iterations to 
expand the inverted channel structure. The dilation operation added pixels 
to the edges of the true positive regions, making it more likely that these 
regions would be included in the final output.

Finally, we applied an erode operation with a 5x5 kernel for 1 iteration to 
refine the boundaries of the predicted regions. The erode operation removed 
pixels from the edges of the predicted regions, making the boundaries sharper 
and more accurate.

The combination of these morphological operations was successful in im- 
proving the accuracy of our model by reducing the number of false negatives 
and improving the true positive rate (Table 7). By incorporating these 
operations into our pipeline, we were able to capture more of the true positive 
regions that were previously missed by the model, resulting in more reliable 
and accurate predictions.

4.3.3. Gap Filling Layer
The segmentation output still had discontinuities. To fill these gaps and 

connect discrete segments in the segmentation output, we used the following 
approach. First, we skeletonized the segmentation output. This basically 
thinned down the inverted channel predictions into skeletal segments that 
are 1 pixel in width. Next, we identified the coordinates of the end pixels 
of the skeletal segments and joined the discrete skeletal pieces that are less 
than 200 pixels apart. These newly introduced gap fills were then dilated 
to create a segmentation output that only consisted of the gaps to be filled. 
Finally, the union of the earlier segmentation output and the gap fills was 
taken, to produce an output with fewer discontinuities (Figure 8).

4.3.4. Interior Region Filling Layer
Finally, to remove interior regions of false negatives in the segmentation 

output, we applied morphological operations to fill in interior pixels of 
connected components in the gap filled skeleton. The final output was taken as 
the union of earlier created gap filled segmentation output and the interior 
region filled skeleton (Figure 9).

5. Results

5.1. Evaluation Metrics
In our project, we chose three metrics to evaluate the segmentation 

results: F1 score, Jaccard score, and AUC score.
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Figure 8: The gap filling layer. (A) Prediction; (B) Skeleton of the prediction; (C) Gap 
filled skeleton; (D) Dilated gap fillings; (E) Union of the prediction and the dilated gap 

fillings

F1 score is a metric that combines precision and recall into a single score, 
which makes it useful for evaluating binary classification tasks like 
segmentation. Jaccard score, also known as Intersection over Union (IoU), 
measures the overlap between the predicted segmentation mask and the 
ground truth mask. AUC score, short for area under the receiver operating 
characteristic curve, is a metric commonly used in binary classification tasks, 
that measures the trade-off between true positive rate and false positive 
rate.

By using multiple metrics to evaluate the segmentation results, we were 
able to gain a complete understanding of the model’s performance. Each 
metric provided a different perspective on the model’s accuracy and helped 
to identify areas where the model may be struggling.

5.2. Experiments, Results and Observations
This section provides a detailed description of the experimental design, 

the comparisons, and the results of our proposed computer vision pipeline. 
All the experiments were performed on a Tesla K80 GPU with 12GB of 
VRAM and an Intel Xeon E5-2680 v4 CPU with 15GB of RAM.

The first step in our experimental approach involved using state-of-the-art 
semantic segmentation models, which have demonstrated promising results 
in the medical domain. Specifically, we trained four models - U-Net, IterNet, 
SA-UNet, and Attention U-Net - using our initial dataset. We used a Dice 
Loss function to train our model for image segmentation. To account for 
class imbalance, we weighted the loss function with a weight of 0.8 for the 
Inverted Channel class and 0.2 for the Background class. This helps the 
model learn to better predict the rare, Inverted Channel class.
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Figure 9: The interior region filling layer. (A) Prediction (contains empty interior 
regions); (B) Skeleton of the prediction; (C) Interior region filled skeleton; (D) Union of 

the prediction and the interior region filled skeleton; (E) Ground truth

To ensure that our work could be replicated without the need for high 
computational power, we fed the complete images after downsampling to 
train the models on the free tier of Google Colab. This allowed us to efficiently 
train the models and obtain initial results for further analysis. The results 
obtained on the downsampled images are presented in Table 1.

Model Image Size F1 Score Jaccard Score AUC score
U-Net 512x512 0.968023 0.938545 0.540723
U-Net 1024x1024 0.956656 0.917147 0.600646

IterNet 512x512 0.895795 0.811802 0.650264
IterNet 1024x1024 0.936776 0.881296 0.627325

SA-UNet 512x512 0.962754 0.929027 0.580050
SA-UNet 1024x1024 0.958053 0.919859 0.550386

Attention U-Net 512x512 0.962449 0.927915 0.593755
Attention U-Net 1024x1024 0.919556 0.853082 0.640787

Table 1: Performance comparison on downsampled images.

After careful observation of our initial results, we realized that additional 
preprocessing techniques could be implemented to improve the accuracy of 
our models. To address this, we converted the HiRISE images to grayscale, 
as they were originally captured in this format. This conversion helped us

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5229258

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



24

to simplify the input data and reduce the dimensionality of the input space, which in 
turn reduced the complexity of our models. This approach is particularly useful when 
dealing with limited computational resources, as we were able to reduce the overall 
computational burden without sacrificing accuracy. Secondly, we applied histogram 
normalization as a data preprocessing step. Histogram normalization is a 
common technique used in image processing that involves adjusting the 
brightness and contrast of an image to improve its visual quality. This technique 
helps to remove variations in the illumination of the image, resulting in a more 
consistent and standardized image dataset. We applied histogram normalization to 
our grayscale images to reduce the impact of lighting variations and enhance the 
contrast of the images.
Table 2 demonstrates the results obtained for each of the models mentioned above 
with data preprocessing steps.

Model Image Size F1 Score Jaccard Score AUC score
U-Net 512x512 0.936672 0.882253 0.614845
U-Net 1024x1024 0.850239 0.745228 0.666388

IterNet 512x512 0.926448 0.863352 0.638022
IterNet 1024x1024 0.905472 0.881476 0.645879

SA-UNet 512x512 0.922798 0.858314 0.636789
SA-UNet 1024x1024 0.951467 0.907968 0.576847

Attention U-Net 512x512 0.927536 0.866751 0.643732
Attention U-Net 1024x1024 0.948797 0.903757 0.602081

Table 2: Performance comparison on downsampled images with data preprocessing steps.

During the initial experiments, we observed that downsampling the original 
satellite images into smaller sizes (512x512 or 1024x1024) resulted in the loss 
of valuable information for the segmentation task. Due to resource 
limitations, we were unable to train a model in the original size of the 
satellite images, which would’ve required significantly more computational 
resources. To address this issue, we adopted an image patching concept, in 
which the original satellite images were split into smaller patches that could 
be fed into the model for training. This approach allowed us to retain 
more of the original image information, while keeping the computational 
requirements within reasonable limits. In the testing phase, we similarly 
split the original test images into patches and used the model to generate 
segmentation predictions for each patch. These segmented patches were 
then reconstructed to create the final segmentation mask in the size of the 
original image.
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We experimented with training models with patch sizes of 512x512, 256x256, 
and 128x128, using the weighted Dice Loss function. By training with different 
patch sizes, we were able to evaluate the trade-offs between computational 
efficiency and segmentation accuracy and identify the optimal patch size for 
our specific task and dataset.

To evaluate the performance of our image patching approach, we con- 
ducted experiments using different patch sizes (512x512 and 256x256) on 
four different models. The results for each combination of model and patch 
size are summarized in Table 3.

Model Image Size F1 Score Jaccard Score AUC score
U-Net 512x512 0.950834 0.907154 0.635816
U-Net 256x256 0.946436 0.898592 0.668614

IterNet 512x512 0.961085 0.925794 0.618314
IterNet 256x256 0.943973 0.894079 0.651937

SA-UNet 512x512 0.965424 0.933881 0.559545
SA-UNet 256x256 0.960936 0.9253724 0.601852

Attention U-Net 512x512 0.956512 0.917293 0.650440
Attention U-Net 256x256 0.942418 0.891560 0.634345

Table 3: Performance comparison of models on patched images.

From the above results, we observed that the models trained with smaller 
image patch sizes, such as 256x256, were able to achieve higher true positive 
rates compared to the models trained with larger patch sizes (512x512).

The reason for this is that the smaller patch sizes allowed the models to 
extract fine details from the satellite images, but at the same time, these 
models had little context information of the overall image, leading them to 
predict other ambiguous features like ridges and impact craters as inverted 
channels, resulting in a higher rate of false positives. In contrast, the models 
trained with larger patch sizes were able to capture more context information 
of the overall image, but at the cost of lower true positive rates, as they 
were not able to extract the fine detailed features necessary for accurately 
identifying inverted channels. However, these models had a relatively lower 
rate of false positives due to their higher contextual understanding.

To overcome this challenge, we developed a novel context enhanced seg- 
mentation approach that combines the strengths of both models. Our 
approach involved training two models, one with a small patch size and 
one with a large patch size. We then used the small patch size model to 
predict the inverted channels within the image patches and used the large 
patch size
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model to provide contextual information to the small patch size model. By 
integrating the predictions of both models, we were able to achieve significantly 
higher true positive rates while maintaining a lower false positive rate compared to 
the models trained with either small or large patch sizes alone. We further optimized 
two models using two separate loss functions to achieve their respective objectives. 
The first model used the Weighted Dice Focal Loss function, while the second 
model used the Weighted Dice Focal CE Loss function.
To evaluate the performance of the two models, we conducted a comprehensive 
analysis and recorded the results for both context deprived model (Table 4, Figure 
10) and context extended model (Table 5, Figure 11 ).

Model Image Size F1 Score Jaccard Score AUC score
U-Net 256x256 0.939910 0.886814 0.730585

IterNet 256x256 0.916006 0.845446 0.736352
SA-UNet 256x256 0.910169 0.835873 0.692126

Attention U-Net 256x256 0.951043 0.907555 0.649751

Table 4: Performance comparison for the context deprived model.

Model Image Size F1 Score Jaccard Score AUC score
U-Net 512x512 0.958880 0.921661 0.650927
IterNet 512x512 0.916566 0.903432 0.678986

SA-UNet 512x512 0.963057 0.929398 0.607861
Attention U-Net 512x512 0.953748 0.912060 0.684585

Table 5: Performance comparison for the context extended model.

We observed that using a single model is not sufficient to achieve high ac- 
curacy, especially for context deprived and context extended images. 
Therefore, we used an ensemble of models to generate better results. For the 
context deprived model, we used U-Net and IterNet as base models and 
manually favored the prediction for the Inverted Channel class. This helped 
us to generate more accurate results for images with low context (Figure 12). 
For the context extended model, we combined U-Net, SA-UNet, and Attention 
U-Net models into a probability voting ensemble model. This approach helped 
us to improve the accuracy of the model for images with high context (Figure 
13). After creating the two ensemble models, we used the context enhanced 
approach to combine the strengths of each model to generate better
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Figure 10: The predictions obtained for the context deprived model. (a) HiRISE image;
(b) Ground truth mask; (c) U-Net model prediction; (d) IterNet model prediction; (e) 

Context deprived model prediction.

results. This approach allowed us to leverage the strengths of each model to 
overcome their respective weaknesses. Our ensemble approach improved the 
accuracy of our image segmentation models significantly as shown in Table 
6.

Model F1 Score Jaccard Score AUC score
Context Deprived Model 0.922642 0.856652 0.770441
Context Extended Model 0.961424 0.926323 0.628339

Context Enhanced Model 0.942190 0.891185 0.767422

Table 6: Performance comparison for the context enhanced model.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5229258

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



28

Figure 11: The predictions obtained for the context extended model. (a) HiRISE image;
(b) Ground truth mask; (c) U-Net model prediction; (d) SA-UNet model prediction; (e) 

Attention U-Net model prediction; (f) Context extended model prediction.

After applying the context enhanced model, we noticed that there were 
still a significant number of closely grouped false positives in the 
segmentation output. To address this issue, we employed an extended 
bounding box overlap method. Specifically, we first identified each of the 
inverted channel segments in the image and drew a bounding box around 
them. We then extended these bounding boxes and accepted any overlapping 
boxes as inverted channels.

The extended bounding box overlap method proved highly effective in 
improving the segmentation results. By incorporating this approach, we were 
able to significantly reduce the number of false positives and achieve a more
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Figure 12: Visualization of performance comparison for the 256x256 dataset trained 
models

accurate segmentation output. Table 7 and Figure 14f demonstrate the final 
results generated by our pipeline after integrating the extended Bounding 
Box Overlap layer, Gap Fill layer and Interior Region Fill layers.

Model F1 Score Jaccard Score AUC score
Context Enhanced Model

Context Enhanced 
Model with

Postprocessing Layers

0.942190
0.966907

0.891185
0.944311

0.767422
0.846299

Table 7: Performance comparison for the final model with the postprocessing layer.

6. Discussion

The proposed novel computer vision pipeline is specifically designed to 
segment inverted channels from HiRISE images of Mars while minimizing 
computational resources. To achieve this, we explored two options for 
processing the satellite images: downsampling and patch-based training. 
Down- sampling the images resulted in poor segmentation results (Table 2), 
which prompted us to pursue the second option of dividing the images into 
smaller patches for training the segmentation models. With this approach, 
we separately generated predictions for each patch and then reconstructed 
the entire
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Figure 13: Visualization of performance comparison for the 512x512 dataset trained 
models

image using these predictions. Although this method required additional 
processing steps, the results demonstrated significant improvement in seg- 
mentation accuracy compared to downsampling (Table 3), thus validating 
our decision to use patch-based training for our resource-efficient satellite 
image segmentation tool.

But splitting the high-resolution image into small patches resulted in a 
loss of crucial contextual information. To address this issue, we propose a 
context enhanced model that combines two models: a context deprived model 
trained on small image patches to capture fine details and a context extended 
model that aims to capture the contextual information of the satellite image. 
The combined context enhanced model outperformed other state-of-the-art 
models in terms of accuracy while using the same computational resources 
(Table 6).

Although the context enhanced model generated satisfactory results, we 
observed that the segmentation prediction had discontinuities and false 
positives (Figure 14e). To address this challenge, we developed a novel 
post- processing layer specifically designed for curvilinear structure 
segmentation. This layer comprises three components: a bounding box 
overlap layer, a gap filling layer, and an interior region filling layer. The 
bounding box overlap layer takes the continuous and curvilinear nature of 
the structures into ac-
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Figure 14: Visualization of the segmentation results obtained for each model. (a) HiRISE 
image; (b) Ground truth mask; (c) Context extended model prediction; (d) Context 

deprived model prediction; (e) Context enhanced model prediction; (f) Final prediction.

count and draws extended bounding boxes around the predicted inverted 
channel components. It iteratively selects the overlapping Inverted Channel 
class components and significantly reduces the false positives in the 
segmentation prediction. The gap filling layer and the interior region filling 
layer focus on the continuous nature of the inverted channel and remove false 
negatives to improve the segmentation accuracy.
Our proposed computer vision pipeline shows promising results for Mar- tian 
inverted channel segmentation and outperforms other state-of-the-art models 
(Figure 15). We believe that our approach can be applied to other curvilinear 
structure segmentation tasks and can contribute to the development of 
resource-efficient computer vision pipelines for remote sensing applications.
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Figure 15: Comparison of Performance: A Visualization.

7. Conclusion

In this paper, we proposed a novel context enhanced computer vision 
pipeline for segmenting curvilinear structures from high resolution satellite 
images, specifically inverted channels on the Martian surface. By splitting 
the images into small patches and using a combination of context deprived 
and context extended models, our pipeline was able to outperform other 
state-of-the-art models in terms of segmentation accuracy while consuming 
fewer computational resources. The postprocessing layer implemented in our 
pipeline further improved segmentation accuracy by reducing noise and filling 
gaps in the segmented structures. The proposed computer vision pipeline was 
able to generate promising results by improving the accuracy and efficiency 
of curvilinear structure segmentation from high resolution satellite images 
and can also be used to segment similar curvilinear structures on Earth or 
other planets.

References

[1] J. Davis, M. Balme, P. Grindrod, R. Williams, and S. Gupta, “Extensive 
Noachian fluvial systems in Arabia Terra: Implications for early Martian 
climate,” Geology, vol. 44, no. 10, pp. 847–850, 2016. https://doi.org/ 
10.1130/78247.1.

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5229258

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed

https://doi.org/10.1130/78247.1
https://doi.org/10.1130/78247.1


33

[2] A. Lefort, D. M. Burr, R. A. Beyer, and A. D. Howard, “Inverted flu- 
vial features in the Aeolis-Zephyria Plana, western Medusae Fossae For- 
mation, Mars: Evidence for post-formation modification,” J. Geophys. 
Res. Planets, vol. 117, no. E3, Mar. 2012. https://doi.org/10.1029/ 
2011je004008.

[3] K.P.G. Pathirana, C.B. Rathnayaka, W.G.C. Silva, T.D. Ambegoda,
R. Manogaran, and S. Karunatillake, “RESIST: Tool to Automat- 
ically Segment Martian Inverted Channels in HiRISE Images,” Lunar 
Planet. Sci. Conf., 2023. https://www.hou.usra.edu/meetings/ 
lpsc2023/pdf/1821.pdf.

[4] Y. Wang, K. Di, X. Xin, and W. Wan, “Automatic detection of Martian 
dark slope streaks by machine learning using HiRISE images,” ISPRS
J. Photogramm. Remote Sens., vol. 129, pp. 12–20, 2017. https://doi. 
org/10.1016/j.isprsjprs.2017.04.014.

[5] Z. Shao, H. Fu, D. Li, O. Altan, and T. Cheng, “Automatic Water- 
Body Segmentation From High-Resolution Satellite Images via Deep 
Networks,” Remote Sens. Environ., vol. 232, p. 111338, 2019. https:
//doi.org/10.1016/j.rse.2019.111338.

[6] Z. Miao, K. Fu, H. Sun, X. Sun, and M. Yan, “Remote sensing 
monitoring of multi-scale watersheds impermeability for urban 
hydrological evaluation,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 
4, pp. 602– 606, Apr. 2018. 
https://doi.org/10.1109/LGRS.2018.2794545.

[7] K. Yuan, X. Zhuang, G. Schaefer, J. Feng, L. Guan, and H. Fang, “Deep- 
Learning-Based Multispectral Satellite Image Segmentation for Water 
Body Detection,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 
14, pp. 7422–7434, 2021. https://doi.org/10.1109/JSTARS.2021.
3098678.
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