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Abstract. Sign Language Recognition (SLR) with machine learning is
challenging due to the scarcity of data for most low-resource sign lan-
guages. Therefore, it is crucial to leverage a few-shot learning strategy for
SLR. This research proposes a novel skeleton-based sign language recog-
nition method based on the prototypical network [20] called ProtoSign.
Furthermore, we contribute to the field by introducing the first pub-
licly accessible dynamic word-level Sinhala Sign Language (SSL) video
dataset comprising 1110 videos over 50 classes. To our knowledge, this is
the first publicly available SSL dataset. Our method is evaluated using
two low-resource language datasets, including our dataset. The experi-
ments show the results in 95% confidence level for both 5-way and 10-way
in 1-shot, 2-shot, and 5-shot settings.

Keywords: Sign Language Recognition · Few Shot Learning · Sign Lan-
guage Recognition(SLR) · Prototypical Network

1 Introduction

Sign languages constitute the principal communication mechanism for approx-
imately 5% of the hearing-impaired global population, as documented by the
World Health Organization [1]. Each linguistic community worldwide utilizes a
distinct sign language tailored to its cultural and regional context. Recogniz-
ing sign languages, especially those considered ’low-resource’ like Sinhala Sign
Language [26], presents unique challenges. Each sign language varies by region,
with distinct gestures and meanings. This diversity, combined with the dynamic
nature of sign languages and the limited availability of comprehensive datasets,
makes Sign Language Recognition (SLR) a complex task.

In the field of SLR, numerous studies have been conducted, employing both
vision-based [4,14] and contact-based approaches [2,10]. While these methods
have shown promising results, they also face several limitations. Contact-based
methods, for instance, require the user to wear specialized gloves equipped with
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sensors, which can be intrusive and cost-prohibitive. On the other hand, vision-
based methods often rely on extensive and rich datasets for training, which
are not always available for low-resource sign languages. Few-shot learning is
designed to build machine learning models that can understand new classes or
tasks with minimal examples or training data [25]. Given the scarcity of sign
language data, particularly for low-resource sign languages, few-shot learning
could play a crucial role in SLR, enabling the development of robust models
that can learn from fewer instances.

In this research, we introduce a new dynamic word-level Sinhala Sign Lan-
guage dataset called SSL50 and propose a new framework called ProtoSign for
low-resource SLR. ProtoSign comprises three core components: skeleton loca-
tion extraction [4,22], a Transformer Encoder (TE) [23] equipped with a novel
composite loss function, and the application of ProtoNet [20] for few-shot classi-
fication. The new SSL50 dataset comprises 50 classes with over 1000 sign videos,
and it is the first publicly available dynamic Sinhala Sign Language dataset. The
first step of our proposed ProtoSign is skeleton location extraction, the basis for
data preprocessing. Next, we apply a TE, a deep learning model renowned for
capturing intricate patterns and dependencies in data. Further, we introduce
a composite loss function that combines triplet and classification loss, improv-
ing the whole approach’s accuracy. Lastly, we employ ProtoNet for the few-shot
classification task, which has state-of-the-art results. Experiment results on the
newly introduced dataset and two publicly available datasets, LSA64 [15] and
GSLL [21] demonstrate the effectiveness of the proposed ProtoSign framework
for low-resource SSL.

2 Related Work

Vision-based Sign Language Recognition(SLR) methods use images or videos
of hand gestures to recognize the signs. Vision-based SLR has dramatically im-
proved with the advancement of deep learning. For example, Convolutional Neu-
ral Networks [9,13], Long Short-Term Memory Networks [6] and Transformers
[17,5], have been used for input encoding in SLR.

However, using deep learning in low-resource SLR is challenging because
of limited available data. A possible solution is to employ a few-shot learning
approach. For instance, Santoro et al. [16] and Vinyals et al. [24] attempted
to solve few-shot classification with end-to-end deep neural networks. Metric-
based models are commonly used in meta-learning, one of the main types of
few-shot learning approaches. Metric learning uses non-parametric techniques to
model sample distance distributions, ensuring proximity between similar samples
and maintaining distance between dissimilar ones. Core models embodying this
principle are Matching Networks [24], Prototypical Networks [20], and Relation
Network [19]. In their work on Prototypical Networks [20], Snell et al. expanded
the concept from individual samples to a class-based metric. They grouped the
descriptors of all samples from a specific class to establish class prototypes. These
prototypes are then used for inference. Artem et al. in [7] introduced a meta-
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(a) SSL50 dataset

(b) LSA64 dataset

(c) GSLL dataset

Fig. 1: Screenshots of sample videos from SSL50, LSA64 and GSLL Sign Lan-
guage Recognition datasets.

learning-based network for American SLR, which acquires the ability to evaluate
the similarity between pairs of feature vectors. Nevertheless, using metric-based
models for low-resource SLR is not well-explored. In this paper, we explore using
Prototypical Networks for low-resource SLR.

3 SSL50 Dataset

This paper introduces a diverse Sinhala Sign Language (SSL) dataset called
SSL50 to facilitate recognizing dynamic SSL, addressing the lack of dynamic SSL
datasets. SSL50 comprises over 1,000 videos, covering 50 classes of commonly
used SSL words. We have ensured the SSL50 contains videos representing the
most frequently used words by consulting with sign language professionals during
the dataset creation and does not have any closely related signs.

Five signers, four female and one male, contributed videos to our dataset.
All contributors were right-handed and between the ages of 21-35. Two signers
learned SSL from their families, while the other three studied at educational
institutions. To ensure a diverse and natural dataset, we conducted orientation
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Fig. 2: Overview of the proposed ProtoSign framework

sessions with sign language professionals, providing them with an overview of our
work. Each participant was requested to produce five sign videos per class using
their mobile phones. We encouraged the signers to vary the backgrounds for each
video of the same sign, aiming to capture a broader range of real-world scenarios
rather than relying on lab-generated datasets. Figure 1a shows screenshots of
sample videos in the SSL50 dataset, characterized by its inclusion of natural
backgrounds. Conversely, Figure 1b and 1c showcase the screenshots of sample
videos sourced from the LSA64 [15] and GSLL [21] datasets, respectively, cre-
ated using static backgrounds. Hence, SSL50 better resembles real-world signing
practices, incorporating natural variations and promoting inclusivity.

After collecting all the sign videos, we renamed each file in the format of
classId signerId variantId (e.g., 001 002 001.mp4) to facilitate dataset an-
notation. Additionally, we converted all the videos into a uniform frame rate of
30fps. The file CSV file file contains comprehensive details about the dataset
including signer details, gloss details (word, label, word in English), and video
details (file name, signer ID, label, duration, fps, video width, video height). The
dataset can be downloaded from here

4 Proposed ProtoSign Framework

The overview of the proposed ProtoSign framework is shown in Figure 2. The
ProtoSign consists of three main steps. First, given the sign video, ProtoSign
extracts the skeleton locations of the signer using the MediaPipe model [11]. Sec-
ond, the extracted skeleton locations are sent to the transformer encoder to ob-
tain a vector representing the input sign video. Finally, following ProtoNet [20],
ProtoSign compares the obtained vector with the prototypes of different sign
classes to determine the class of the given sign video.

4.1 Skeleton Locations Extraction

In the ProtoSign framework, the first step involves identifying the location of the
skeleton in each video frame, including the face, body, and hand landmarks. The
process of skeleton extraction is illustrated in Figure 3. To ensure accuracy, we

https://docs.google.com/spreadsheets/d/1oPTGMwdu6lfFPEDg5ecHydNbLgOFeie4hQrN7tICAqA/edit?usp=sharing
https://drive.google.com/drive/folders/1GxdQA9Zyr7y1Np0HP7tKskIDnvyoPhkA
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Fig. 3: The process pipeline for extracting and refining skeleton locations.

use the YOLOv4 framework [3] to detect the person in the video. This involves
calculating the coordinates of the bounding box for each frame, which helps us
determine the maximum bounding box that includes the person in each frame.
Once we have the bounding box, we crop each frame using it. This step is essential
in addressing the variability in the distance between the camera and the person.
In real-world scenarios, we cannot expect the signer to be at a specific distance
from the camera. By isolating the person, we eliminate the effects of distance
and potential interference from other objects in the video background.

Next, we use a standard pose estimation algorithm from = MediaPipe [11]
to extract skeleton locations. The algorithm utilizes two models: one for the
hands and another for the whole body, resulting in a comprehensive extraction of
skeleton locations. We then employ a refinement phase to remove any irrelevant
locations. This method yields 57 skeleton locations, including 21 per hand, 4 for
the body, and 11 for the face. Excluding the face locations, the remaining points
represent the body’s joints.

4.2 Sign Video Encoder

ProtoSign adapts Prototypical Networks (ProtoNet) [20] to deal with low-
resource sign languages. ProtoNet makes the predictions based on prototype
representations of each class. To create prototypes of classes, we develop a Sign
Video Encoder based on a Transformer Encoder (TE). We use a modified ver-
sion of the Transformer model [23] with a classification head as the final layer.
This TE is first trained using a large sign language dataset, and in our imple-
mentation, we use the LSA64 dataset [15]. Next, we finetune the TE following
the method used in [20] to create more discriminative prototypes for each sign
class. In this section, we first describe how we pre-train the TE using a large
sign language model and then detail how we fine-tune it.
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Fig. 4: Training phase of the Transformer Encoder used in ProtoSign

Given a sign video v of class y, the input to the transformer is a sequence
of normalized skeleton locations x extracted in the previous step, x ∈ Rn×d

where n is the sequence length and d is the number of features. x is sent through
positional encoding, self-attention, and feed-forward layers, mirroring the process
in the original TE. Suppose the output of TE is z ∈ Rn×d̄ where d̄ is the output
embedding size of the TE. We take the mean of z along the sequence length
dimension to get the vector embedding of the input vx:

vx =
1

n

∑
zi∈z

zi (1)

Finally, the classification head, another linear layer, is applied to vx to get
the predicted class ȳ.

We employ a composite objective function of triplet loss and classification
loss to train the transformer encoder to generate discriminative vector repre-
sentations for different sign classes. The classification loss forces the transformer
encoder to learn discriminative features for each class. The triplet loss further en-
hances the discriminativeness of learned feature vectors by forcing higher intra-
class and lower inter-class similarities. The training phase of the transformer
encoder used in ProtoSign is shown in Figure 4.

Suppose a positive sample of x, which shares the same label, is denoted
by xp, and a negative sample with a different label is denoted by xn. Let the
output vector embedding of the transformer encoder for xp and xn be vp and
vn, respectively. Then the triplet loss LT is defined as

LT = ∥vx − vp∥22 − ∥vx − vn∥22 + α (2)

Here, α is a margin enforced between positive and negative pairs. Through
hyperparameter tuning, we set α to 2.0. We adopted an online triplet selec-
tion strategy in [18]. Although computationally intensive, the online strategy
enhances robustness, expedites convergence, and performs better.



Sign Language Recognition for Low Resource Languages using FSL 7

Fig. 5: The Prototypical Network Architecture.

We supplement the Triplet Loss with Classification Loss to provide compre-
hensive supervision to the TE during training. The Classification Loss aids the
model in making accurate classification decisions for individual examples, thus
facilitating the distinction between different classes. This, in turn, eases the task
of Triplet Loss in refining the relative distances between classes, culminating in
enhanced performance. The classification objective of the transformer encoder,
LC , is defined using the multi-class Classification Loss.

LC = − logP (ȳ|vx) (3)

The final objective function of the transformer encoder, L, is

L = β ∗ LT + (1− β) ∗ LC (4)

, where β is a hyper-parameter and in our experiment we set beta to be 0.9
through parameter tuning.

Next, following [20], we use episodic training to fine-tune the trained TE.
Each episode consists of a support set of N samples S = {(x1, y1), ..., (xN , yN )},
where xi is the sample video, yi ∈ {1, ...,K} is the corresponding label and K
denotes the classes randomly selected from the training set comprising C classes
(|C| > |K|). Suppose Sk is the set of samples belonging to class k ∈ K

We calculate the prototype for each class k ∈ K, pk, by taking the average of
the embeddings produced TE for Sk. Given a query point (x̄ ∈ Q, we obtain its
vector representation from TE, vx̄ and calculate the Euclidean distance between
vx̄ and each pk. To determine the class of x̄, we apply softmax over the calculated
distances, producing a probability distribution over the classes. Figure 5 shows
the fine-tuning phase of ProtoSign following the ProtoNet.

The same approach is employed during the inference, but data is randomly
selected from the testing set instead.
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Dataset Num. of
Classes

Num. of
Signers

Average Num. of
Videos per Class

Total Num. of
Videos

LSA64 64 10 50 3200

SSL50 50 5 22 1110

GSLL 347 2 10 3464

Table 1: Datasets Summary

5 Experimental Study

5.1 Datasets

In addition to the newly introduced SSL50 dataset, our experiments use LSA64 [15]
and GSLL [21] datasets.

– LSA64: The LSA64 dataset [15] is a comprehensive database developed for
Argentinian Sign Language (LSA). The dataset comprises 3200 videos fea-
turing 64 unique signs performed by ten non-expert, right-handed subjects
five times each. The chosen signs, a mix of common verbs and nouns, were
recorded in two separate sessions under distinct lighting conditions - out-
doors with natural light and indoors with artificial light, providing variety
in illumination across the videos.

– GSLL: The Greek Sign Language (GSLL) dataset [21] comprises 3,464
videos encapsulating a total of 161,050 frames, with each video representing
one of 347 distinct sign classes. Two signers perform these signs, repeating
each sign 5-17 times to offer variations.

A summary of the datasets used in our experiments is given in Table 1.

5.2 Implementation Details

We implement ProtoSign using PyTorch framework [12], and it is trained on an
NVIDIA Tesla T4 GPU or an NVIDIA GeForce RTX 2040 GPU. We use the
ADAM optimizer [8] for training.

We first train the TE in ProtoSign using the LSA64 dataset. We performed
a grid search for hyperparameter tuning to optimize the overall performance.
We set the number of attention heads to 16, batch size to 32 and learning rate
to 0.002 and trained the model for 70 epochs. Further, we experimented with
different values for β and set it to 0.9, which gives the best results.

Next, use ProtoSign for few-shot classification of signs by finetuning TE on
each low-resource language dataset, SSL50 and GSLL. Here, for each 1-shot,
2-shot and 5-shot scenario for a given low-resource dataset, we create train,
validation and test datasets separately. For example, let’s consider the SSL50
dataset under the 1-shot scenario. We select two instances from each of the 50
classes for training and the remaining for testing. One sample is assigned as the
support set of two chosen for training, whereas one is assigned as the query set.
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Table 2: Few-shot classification accuracies of ProtoSign on SSL and GSLL
datasets

5 way 10 way
1 shot 2 shot 5 shot 1 shot 2 shot 5 shot

SSL50 61.2% 81.66% 93.08% 42.75% 69.24% 87.47%

GSLL 73.20% 84.38% - 62.5% 79.65% -

Table 3: Few-shot learning accuracies of ProtoSign for different scenarios on
SSL50 dataset

Model
5 way 10 way

1 shot 2 shot 5 shot 1 shot 2 shot 5 shot

ProtoSign - CL 53.2% 74.3% 87.47% 37.7% 59.8% 84.06%

ProtoSign - TL 57.80% 77.47% 92.47% 41.45% 63.78% 86.73%

Matching Networks 63.4% 78.4% 88.45% 46.87% 69.09% 83.34%

VE + ProtoNet 41% 43.6% 41.22% 21% 22% 22.25%

ProtoSign 61.21% 81.66% 93.08% 42.75% 69.24% 87.47%

In each episode, we randomly select 5 (in the 5-way scenario) or 10 (in the 10-way
scenario) classes from the training. Each epoch comprises 1000 such episodes.
The code is available at https://github.com/ProtoSign

5.3 Experimental Results

Table 2 shows the few-shot classification accuracies of ProtoSign on SSL50 and
GSLL datasets under different settings.

To show the effectiveness of our approach, we conducted four main ablation
studies on the SSL50 and GSLL datasets. The final model we proposed integrates
a combination of classification loss and triplet loss, including an extra classifi-
cation layer nested within the Transformer Encoder. In the ablation studies,
we evaluated the performance of our model by training only using Triplet Loss
(TL) or classification loss (CL). Further, we considered replacing the ProtoNet
with Matching Networks, allowing for a comparative analysis between these ap-
proaches. Furthermore, we assess the performance of ProtoSign when using a
Video Encoder (VE) directly instead of skeleton location extractions followed
by a Transformer Encoder. In our experiments, we use the r3d-18 video encoder
for this evaluation.

Table 3 shows the performance of variants of ProtoSign for various con-
ditions using the SSL50 dataset. We observe that ProtoSign has achieved the
best performance among different variants for all the scenarios except the 1-
shot scenario, whereas replacing ProtoNet with Matching Networks has yielded
the best results in the 1-shot scenario. Table 4 displays the few-shot learning
accuracies of variants of ProtoSign for the GSLL dataset. Here, our ProtoSign
model surpasses all other variants in all the scenarios. The results of these ab-

https://github.com/ProtoSign
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Table 4: N-way k-shot accuracies for different scenarios on GSLL dataset

Model
5 way 10 way

1 shot 2 shot 1 shot 2 shot

ProtoSign - CL 66% 74.3% 37.7% 59.8%

ProtoSign - TL 70% 82.02% 60.10% 74.37%

Matching Networks 70.19% 82.78% 61.8% 75.61%

VE + ProtoNet 40.64% 46.45% 36.65% 43.12%

ProtoSign 73.20% 84.38% 62.5% 79.65%

lations studies demonstrate the effectiveness of each component of the proposed
ProtoSign framework.

6 Conclusion

This paper presents a new architecture for few-shot learning in low-resource lan-
guages called ProtoSign, along with a dynamic dataset of Sinhala Sign Language
at the word level called SSL50. The ProtoSign architecture consists of three main
steps. Firstly, it extracts the skeleton locations of the signer from the sign video.
Secondly, the extracted skeleton locations are sent to the transformer encoder to
obtain a vector representing the input sign video. Finally, ProtoSign compares
the obtained vector with prototypes of different sign classes to determine the
class of the given sign video. The proposed framework’s effectiveness is demon-
strated through experimental results on two low-resource sign language datasets,
the newly introduced SSL50 and GSLL.
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